Latent Anomaly Detection Through Density Matrices
- URL: http://arxiv.org/abs/2408.07623v1
- Date: Wed, 14 Aug 2024 15:44:51 GMT
- Title: Latent Anomaly Detection Through Density Matrices
- Authors: Joseph Gallego-Mejia, Oscar Bustos-Brinez, Fabio A. González,
- Abstract summary: This paper introduces a novel anomaly detection framework that combines the robust statistical principles of density-estimation-based anomaly detection methods with the representation-learning capabilities of deep learning models.
The method originated from this framework is presented in two different versions: a shallow approach and a deep approach that integrates an autoencoder to learn a low-dimensional representation of the data.
- Score: 3.843839245375552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel anomaly detection framework that combines the robust statistical principles of density-estimation-based anomaly detection methods with the representation-learning capabilities of deep learning models. The method originated from this framework is presented in two different versions: a shallow approach employing a density-estimation model based on adaptive Fourier features and density matrices, and a deep approach that integrates an autoencoder to learn a low-dimensional representation of the data. By estimating the density of new samples, both methods are able to find normality scores. The methods can be seamlessly integrated into an end-to-end architecture and optimized using gradient-based optimization techniques. To evaluate their performance, extensive experiments were conducted on various benchmark datasets. The results demonstrate that both versions of the method can achieve comparable or superior performance when compared to other state-of-the-art methods. Notably, the shallow approach performs better on datasets with fewer dimensions, while the autoencoder-based approach shows improved performance on datasets with higher dimensions.
Related papers
- Enhancing binary classification: A new stacking method via leveraging computational geometry [5.906199156511947]
This paper introduces a novel approach that integrates computational geometry techniques, specifically solving the maximum weighted rectangle problem, to develop a new meta-model for binary classification.
Our method is evaluated on multiple open datasets, with statistical analysis showing its stability and demonstrating improvements in accuracy.
Our method is highly applicable not only in stacking ensemble learning but also in various real-world applications, such as hospital health evaluation scoring and bank credit scoring systems.
arXiv Detail & Related papers (2024-10-30T06:11:08Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection [0.0]
The method combines an autoencoder, for learning a low-dimensional representation of the data, with a density-estimation model.
The method predicts a degree of normality for new samples based on the estimated density.
The experimental results show that the method performs on par with or outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2022-11-15T21:51:42Z) - AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features [0.0]
The method can be seen as an efficient approximation of Kernel Density Estimation (KDE)
A systematic comparison of the proposed method with eleven state-of-the-art anomaly detection methods on various data sets is presented.
arXiv Detail & Related papers (2022-10-26T15:43:16Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
An unsupervised feature selection is proposed by integrating the framework of self-paced learning and subspace learning.
The convergence of the method is proved theoretically and experimentally.
The experimental results show that the proposed method can improve the performance of clustering methods and outperform other compared algorithms.
arXiv Detail & Related papers (2021-12-14T08:28:19Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.