Nanosecond gating of superconducting nanowire single-photon detectors
using cryogenic bias circuitry
- URL: http://arxiv.org/abs/2210.14841v1
- Date: Wed, 26 Oct 2022 16:41:34 GMT
- Title: Nanosecond gating of superconducting nanowire single-photon detectors
using cryogenic bias circuitry
- Authors: Thomas Hummel, Alex Widhalm, Jan Philipp H\"Opker, Klaus D. J\"Ons,
Jin Chang, Andreas Fognini, Stephan Steinhauer, Val Zwiller, Artur Zrenner,
Tim J. Bartley
- Abstract summary: Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time.
We demonstrate active gating of an SNSPD with a minimum off-to-on rise time of 2.4 ns and a total gate length of 5.0 ns.
We exploit gated operation to demonstrate a method to increase in the photon counting dynamic range by a factor 11.2, as well as temporal filtering of a strong pump in an emulated pump-probe experiment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting nanowire single-photon detectors (SNSPDs) show near unity
efficiency, low dark count rate, and short recovery time. Combining these
characteristics with temporal control of SNSPDs broadens their applications as
in active de-latching for higher dynamic range counting or temporal filtering
for pump-probe spectroscopy or LiDAR. To that end, we demonstrate active gating
of an SNSPD with a minimum off-to-on rise time of 2.4 ns and a total gate
length of 5.0 ns. We show how the rise time depends on the inductance of the
detector in combination with the control electronics. The gate window is
demonstrated to be fully and freely, electrically tunable up to 500 ns at a
repetition rate of 1.0 MHz, as well as ungated, free-running operation. Control
electronics to generate the gating are mounted on the 2.3 K stage of a
closed-cycle sorption cryostat, while the detector is operated on the cold
stage at 0.8 K. We show that the efficiency and timing jitter of the detector
is not altered during the on-time of the gating window. We exploit gated
operation to demonstrate a method to increase in the photon counting dynamic
range by a factor 11.2, as well as temporal filtering of a strong pump in an
emulated pump-probe experiment.
Related papers
- Current-Crowding-Free Superconducting Nanowire Single-Photon Detectors [1.0037949839020768]
Superconducting nanowire single-photon detectors (SNSPDs) excel in dark matter detection, quantum science and technology, and biomedical imaging.
We achieve an internal detection efficiency of 94% for a wavelength of 780 nm with a dark count rate of 7 mHz near the onset of saturating detection efficiency.
arXiv Detail & Related papers (2024-07-19T09:59:17Z) - Compact free-running InGaAs/InP single-photon detector with 40%
detection efficiency and 2.3 kcps dark count rate [13.246618472071553]
Free-running InGaAs/InP single-photon detectors (SPDs) are the key components for applications requiring asynchronous single-photon detection in the near-infrared region.
Here, we present the implementation of a compact four-channel multimode fiber coupling free-running InGaAs/InP SPD, with the best overall performance to date.
arXiv Detail & Related papers (2023-10-26T02:56:01Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - High-speed detection of 1550 nm single photons with superconducting
nanowire detectors [0.0]
detector for single 1550 nm photons with up to 78% detection efficiency.
World-leading maximum count rate of 1.5 giga-counts/s at 3 dB compression.
arXiv Detail & Related papers (2022-10-21T00:10:35Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Broadband polarization insensitivity and high detection efficiency in
high-fill-factor superconducting microwire single-photon detectors [0.0]
Single-photon detection via absorption in nanoscale superconducting structures has become a preferred technology in quantum optics.
This work demonstrates simultaneous low-polarization sensitivity ($1.02pm 0.008$) and high detection efficiency ($> 91.8%$ with $67%$ confidence at $2times105$ counts per second) across a $40$ nm bandwidth.
arXiv Detail & Related papers (2022-02-12T00:28:58Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Single-photon detection and cryogenic reconfigurability in Lithium
Niobate nanophotonic circuits [0.13854111346209866]
Lithium-Niobate-On-Insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies.
Our results provide blueprints for implementing complex quantum photonic devices on the LNOI platform.
arXiv Detail & Related papers (2021-03-19T18:13:52Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.