Current-Crowding-Free Superconducting Nanowire Single-Photon Detectors
- URL: http://arxiv.org/abs/2407.14171v1
- Date: Fri, 19 Jul 2024 09:59:17 GMT
- Title: Current-Crowding-Free Superconducting Nanowire Single-Photon Detectors
- Authors: Stefan Strohauer, Fabian Wietschorke, Christian Schmid, Stefanie Grotowski, Lucio Zugliani, Björn Jonas, Kai Müller, Jonathan J. Finley,
- Abstract summary: Superconducting nanowire single-photon detectors (SNSPDs) excel in dark matter detection, quantum science and technology, and biomedical imaging.
We achieve an internal detection efficiency of 94% for a wavelength of 780 nm with a dark count rate of 7 mHz near the onset of saturating detection efficiency.
- Score: 1.0037949839020768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting single photons is essential for applications such as dark matter detection, quantum science and technology, and biomedical imaging. Superconducting nanowire single-photon detectors (SNSPDs) excel in this task due to their near-unity detection efficiency, sub-Hz dark count rates, and picosecond timing jitter. However, a local increase of current density (current crowding) in the bends of meander-shaped SNSPDs limits these performance metrics. By locally irradiating the straight segments of SNSPDs with helium ions while leaving the bends unirradiated, we realize current-crowding-free SNSPDs with simultaneously enhanced sensitivity: after irradiation with 800 ions/nm$\unicode{xB2}$, locally irradiated SNSPDs showed a relative saturation plateau width of 37% while fully irradiated SNSPDs reached only 10%. This larger relative plateau width allows operation at lower relative bias currents, thereby reducing the dark count rate while still detecting single photons efficiently. We achieve an internal detection efficiency of 94% for a wavelength of 780 nm with a dark count rate of 7 mHz near the onset of saturating detection efficiency.
Related papers
- Kinetic Inductance and Jitter Dependence of the Intrinsic Photon Number Resolution in Superconducting Nanowire Single-Photon Detectors [0.0]
superconducting nanowire single-photon detectors (SNSPDs) offer superior efficiency, speed, noise reduction, and timing precision.
Photon-number discrimination remains constrained by the nanowire's electrical properties and readout jitter.
Lower jitter as well as increased kinetic inductance enhances the pulse separation for different photon numbers and improves the PNR capability.
arXiv Detail & Related papers (2024-10-30T16:16:11Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - High-speed detection of 1550 nm single photons with superconducting
nanowire detectors [0.0]
detector for single 1550 nm photons with up to 78% detection efficiency.
World-leading maximum count rate of 1.5 giga-counts/s at 3 dB compression.
arXiv Detail & Related papers (2022-10-21T00:10:35Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Operation of parallel SNSPDs at high detection rates [0.0]
Superconducting nanowire single-photon detectors (SNSPDs) have delivered ex-cellent performance.
One of the key characteristic of SNSPDs is their detection rate, which is typically higher than other types of free-running single-photondetectors.
arXiv Detail & Related papers (2021-09-07T14:48:04Z) - Fractal superconducting nanowires detect infrared single photons with
84% system detection efficiency, 1.02 polarization sensitivity, and 20.8 ps
timing resolution [9.401126858233535]
superconducting nanowire single-photon detectors (SNSPDs)
Novel device structure of SNSPDs, allowing for operation in the visible, near, and mid-infrared spectral ranges.
Paved the way for polarization-insensitive single-photon detection with high SDE and high timing resolution.
arXiv Detail & Related papers (2020-12-12T05:07:31Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - Detecting single infrared photons toward optimal system detection
efficiency [13.993435351871511]
Superconducting nanowire single-photon detector (SNSPD) with near-unity system efficiency is a key enabling, but still elusive technology.
Here, we produce NbN SNSPDs with a record system efficiency by replacing a single-layer nanowire with twin-layer nanowires on a dielectric mirror.
The detector at 0.8 K shows a maximal system detection efficiency (SDE) of 98% at 1590 nm and a system efficiency of over 95% in the wavelength range of 1530-1630 nm.
arXiv Detail & Related papers (2020-09-30T14:08:19Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.