Dynamic Survival Transformers for Causal Inference with Electronic
Health Records
- URL: http://arxiv.org/abs/2210.15417v1
- Date: Tue, 25 Oct 2022 18:17:46 GMT
- Title: Dynamic Survival Transformers for Causal Inference with Electronic
Health Records
- Authors: Prayag Chatha, Yixin Wang, Zhenke Wu, Jeffrey Regier
- Abstract summary: We introduce the Dynamic Survival Transformer (DynST), a deep survival model that trains on electronic health records.
We derive a semi-synthetic EHR dataset from MIMIC-III to show that DynST can accurately estimate the causal effect of a treatment intervention.
- Score: 19.89643522713678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medicine, researchers often seek to infer the effects of a given treatment
on patients' outcomes. However, the standard methods for causal survival
analysis make simplistic assumptions about the data-generating process and
cannot capture complex interactions among patient covariates. We introduce the
Dynamic Survival Transformer (DynST), a deep survival model that trains on
electronic health records (EHRs). Unlike previous transformers used in survival
analysis, DynST can make use of time-varying information to predict evolving
survival probabilities. We derive a semi-synthetic EHR dataset from MIMIC-III
to show that DynST can accurately estimate the causal effect of a treatment
intervention on restricted mean survival time (RMST). We demonstrate that DynST
achieves better predictive and causal estimation than two alternative models.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SurvTimeSurvival: Survival Analysis On The Patient With Multiple
Visits/Records [26.66492761632773]
The accurate prediction of survival times for patients with severe diseases remains a critical challenge despite recent advances in artificial intelligence.
This study introduces "SurvTimeSurvival: Survival Analysis On Patients With Multiple Visits/Records"
arXiv Detail & Related papers (2023-11-16T12:30:14Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
We propose a framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data.
Our framework uses any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions.
We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 patients.
arXiv Detail & Related papers (2023-08-17T03:46:23Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Dynamic prediction of time to event with survival curves [3.9169188005935927]
We apply our recently developed counterfactual dynamic survival model (CDSM) to static and longitudinal observational data.
We prove that the inflection point of its estimated individual survival curves provides reliable prediction of the patient failure time.
arXiv Detail & Related papers (2021-01-26T12:17:27Z) - Parkland Trauma Index of Mortality (PTIM): Real-time Predictive Model
for PolyTrauma Patients [0.0]
The Parkland Trauma Index of Mortality (PTIM) is a machine learning algorithm that uses electronic medical record (EMR) data to predict mortality.
The model updates every hour, evolving with the patient's physiologic response to trauma.
It may be a useful tool to inform clinical decision-making for polytrauma patients early in their hospitalization.
arXiv Detail & Related papers (2020-10-07T20:34:03Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.