SurvTimeSurvival: Survival Analysis On The Patient With Multiple
Visits/Records
- URL: http://arxiv.org/abs/2311.09854v1
- Date: Thu, 16 Nov 2023 12:30:14 GMT
- Title: SurvTimeSurvival: Survival Analysis On The Patient With Multiple
Visits/Records
- Authors: Hung Le, Ong Eng-Jon, Bober Miroslaw
- Abstract summary: The accurate prediction of survival times for patients with severe diseases remains a critical challenge despite recent advances in artificial intelligence.
This study introduces "SurvTimeSurvival: Survival Analysis On Patients With Multiple Visits/Records"
- Score: 26.66492761632773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate prediction of survival times for patients with severe diseases
remains a critical challenge despite recent advances in artificial
intelligence. This study introduces "SurvTimeSurvival: Survival Analysis On
Patients With Multiple Visits/Records", utilizing the Transformer model to not
only handle the complexities of time-varying covariates but also covariates
data. We also tackle the data sparsity issue common to survival analysis
datasets by integrating synthetic data generation into the learning process of
our model. We show that our method outperforms state-of-the-art deep learning
approaches on both covariates and time-varying covariates datasets. Our
approach aims not only to enhance the understanding of individual patient
survival trajectories across various medical conditions, thereby improving
prediction accuracy, but also to play a pivotal role in designing clinical
trials and creating new treatments.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Advancing Head and Neck Cancer Survival Prediction via Multi-Label Learning and Deep Model Interpretation [7.698783025721071]
We propose IMLSP, an Interpretable Multi-Label multi-modal deep Survival Prediction framework for predicting multiple HNC survival outcomes simultaneously.
We also present Grad-TEAM, a Gradient-weighted Time-Event Activation Mapping approach specifically developed for deep survival model visual explanation.
arXiv Detail & Related papers (2024-05-09T01:30:04Z) - SAVAE: Leveraging the variational Bayes autoencoder for survival
analysis [10.0060346233449]
We introduce SAVAE (Survival Analysis Variational Autoencoder), a novel approach based on Variational Autoencoders.
Savoe contributes significantly to the field by introducing a tailored ELBO formulation for survival analysis.
It offers a general method that consistently performs well on various metrics, demonstrating robustness and stability through different experiments.
arXiv Detail & Related papers (2023-12-22T12:36:50Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - A Deep Variational Approach to Clustering Survival Data [5.871238645229228]
We introduce a novel probabilistic approach to cluster survival data in a variational deep clustering setting.
Our proposed method employs a deep generative model to uncover the underlying distribution of both the explanatory variables and the potentially censored survival times.
arXiv Detail & Related papers (2021-06-10T14:10:25Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.