Supervised classification methods applied to airborne hyperspectral
images: Comparative study using mutual information
- URL: http://arxiv.org/abs/2210.15422v1
- Date: Thu, 27 Oct 2022 13:39:08 GMT
- Title: Supervised classification methods applied to airborne hyperspectral
images: Comparative study using mutual information
- Authors: Hasna Nhaila, Asma Elmaizi, Elkebir Sarhrouni and Ahmed Hammouch
- Abstract summary: This paper investigates the performance of four supervised learning algorithms, namely, Support Vector Machines SVM, Random Forest RF, K-Nearest Neighbors KNN and Linear Discriminant Analysis LDA.
The experiments have been performed on three real hyperspectral datasets taken from the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging Spectrometer ROSIS sensors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, the hyperspectral remote sensing imagery HSI becomes an important
tool to observe the Earth's surface, detect the climatic changes and many other
applications. The classification of HSI is one of the most challenging tasks
due to the large amount of spectral information and the presence of redundant
and irrelevant bands. Although great progresses have been made on
classification techniques, few studies have been done to provide practical
guidelines to determine the appropriate classifier for HSI. In this paper, we
investigate the performance of four supervised learning algorithms, namely,
Support Vector Machines SVM, Random Forest RF, K-Nearest Neighbors KNN and
Linear Discriminant Analysis LDA with different kernels in terms of
classification accuracies. The experiments have been performed on three real
hyperspectral datasets taken from the NASA's Airborne Visible/Infrared Imaging
Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging
Spectrometer ROSIS sensors. The mutual information had been used to reduce the
dimensionality of the used datasets for better classification efficiency. The
extensive experiments demonstrate that the SVM classifier with RBF kernel and
RF produced statistically better results and seems to be respectively the more
suitable as supervised classifiers for the hyperspectral remote sensing images.
Keywords: hyperspectral images, mutual information, dimension reduction,
Support Vector Machines, K-Nearest Neighbors, Random Forest, Linear
Discriminant Analysis.
Related papers
- A Survey of Graph and Attention Based Hyperspectral Image Classification
Methods for Remote Sensing Data [5.1901440366375855]
The use of Deep Learning techniques for classification in Hyperspectral Imaging (HSI) is rapidly growing.
Recent methods have also explored the usage of Graph Convolution Networks and their unique ability to use node features in prediction.
arXiv Detail & Related papers (2023-10-16T00:42:25Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hyperspectral Image Analysis with Subspace Learning-based One-Class
Classification [18.786429304405097]
Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification.
In this study, we investigate recently proposed subspace learning methods for one-class classification (OCC)
In this way, there is no separate dimensionality reduction or feature selection procedure needed in the proposed classification framework.
Considering the imbalanced labels of the LULC classification problem and rich spectral information (high number of dimensions), the proposed classification approach is well-suited for HSI data.
arXiv Detail & Related papers (2023-04-19T15:17:05Z) - Hyperspectral Images Classification and Dimensionality Reduction using
spectral interaction and SVM classifier [0.0]
The high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data.
The existence of noisy, redundant and irrelevant bands increases the computational complexity.
We propose a novel filter approach based on the spectral interaction measure and the support vector machines for dimensionality reduction.
arXiv Detail & Related papers (2022-10-27T15:37:57Z) - A Novel Filter Approach for Band Selection and Classification of
Hyperspectral Remotely Sensed Images Using Normalized Mutual Information and
Support Vector Machines [0.0]
This paper introduces a new filter approach for dimension reduction and classification of hyperspectral images using information theoretic (normalized mutual information) and support vector machines SVM.
We applied our proposed algorithm on two well-known benchmark datasets gathered by the NASA's AVIRIS sensor over Indiana and Salinas valley in USA.
arXiv Detail & Related papers (2022-10-27T14:23:06Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
We propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE)
Experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS)
arXiv Detail & Related papers (2022-10-25T21:17:11Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.