論文の概要: Reconstruction of compressed spectral imaging based on global structure
and spectral correlation
- arxiv url: http://arxiv.org/abs/2210.15492v1
- Date: Thu, 27 Oct 2022 14:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 15:33:37.334114
- Title: Reconstruction of compressed spectral imaging based on global structure
and spectral correlation
- Title(参考訳): 大域構造とスペクトル相関に基づく圧縮スペクトル像の再構成
- Authors: Pan Wang, Jie Li, Siqi Zhang, Chun Qi, Lin Wang, and Jieru Chen
- Abstract要約: 提案手法は、畳み込みカーネルを用いてグローバルイメージを操作する。
畳み込みスパース符号化が低周波数に不感な問題を解決するため、大域的全変量(TV)制約を加算する。
提案手法は,PSNRで最大7dB,SSIMで最大10%向上する。
- 参考スコア(独自算出の注目度): 17.35611893815407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a convolution sparse coding method based on global structure
characteristics and spectral correlation is proposed for the reconstruction of
compressive spectral images. The proposed method uses the convolution kernel to
operate the global image, which can better preserve image structure information
in the spatial dimension. To take full exploration of the constraints between
spectra, the coefficients corresponding to the convolution kernel are
constrained by the norm to improve spectral accuracy. And, to solve the problem
that convolutional sparse coding is insensitive to low frequency, the global
total-variation (TV) constraint is added to estimate the low-frequency
components. It not only ensures the effective estimation of the low-frequency
but also transforms the convolutional sparse coding into a de-noising process,
which makes the reconstructing process simpler. Simulations show that compared
with the current mainstream optimization methods (DeSCI and Gap-TV), the
proposed method improves the reconstruction quality by up to 7 dB in PSNR and
10% in SSIM, and has a great improvement in the details of the reconstructed
image.
- Abstract(参考訳): 本稿では,大域構造特性とスペクトル相関に基づく畳み込みスパース符号化法を提案する。
提案手法は畳み込みカーネルを用いて大域画像を演算し,空間次元における画像構造情報をよりよく保存する。
スペクトル間の制約をフルに探索するために、畳み込みカーネルに対応する係数は標準により制約され、スペクトル精度が向上する。
そして、畳み込みスパース符号化が低周波数に不感な問題を解決するために、低周波数成分を推定するために、大域的総偏差(TV)制約を加える。
低周波の効果的な推定を確実にするだけでなく、畳み込みスパース符号をデノイズ化プロセスに変換することにより、再構成プロセスがより簡単になる。
シミュレーションにより,従来の主流最適化手法 (DeSCI, Gap-TV) と比較して,PSNRでは最大7dB,SSIMでは最大10%の再現精度が向上し,再構成画像の細部が大幅に改善された。
関連論文リスト
- SST-ReversibleNet: Reversible-prior-based Spectral-Spatial Transformer
for Efficient Hyperspectral Image Reconstruction [15.233185887461826]
Reversible-prior-based methodと呼ばれる新しいフレームワークが提案されている。
ReversibleNetは、シミュレートされた実HSIデータセットの最先端メソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-05-06T14:01:02Z) - Large-scale Global Low-rank Optimization for Computational Compressed
Imaging [8.594666859332124]
本稿では,グローバルな自己相似性と高効率な大規模再構成を実現するグローバル低ランク(GLR)最適化手法を提案する。
深層学習における自己認識機構に触発されたGLRは、従来の一様選択の代わりに特徴検出によって画像パッチを抽出する。
時間・周波数・スペクトル次元におけるGLRの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2023-01-08T14:12:51Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM)アルゴリズムは、形態的再構成操作とタイトウェーブレットフレーム変換を組み込んでいる。
特徴集合とその理想値の間の残差に対して$ell_0$正規化項を付与することにより、改良されたFCMアルゴリズムを提案する。
合成, 医用, カラー画像に対する実験結果から, 提案アルゴリズムは効率的かつ効率的であり, 他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-14T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。