Incorporating Interactive Facts for Stock Selection via Neural Recursive
ODEs
- URL: http://arxiv.org/abs/2210.15925v1
- Date: Fri, 28 Oct 2022 06:14:02 GMT
- Title: Incorporating Interactive Facts for Stock Selection via Neural Recursive
ODEs
- Authors: Qiang Gao, Xinzhu Zhou, Kunpeng Zhang, Li Huang, Siyuan Liu, Fan Zhou
- Abstract summary: We present StockODE, a latent variable model with Gaussian prior.
We design Neural Recursive Ordinary Differential Equation Networks (NRODEs) to capture the temporal evolution of stock volatility.
Experiments conducted on two real-world stock market datasets demonstrate that StockODE significantly outperforms several baselines.
- Score: 30.629948593098273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock selection attempts to rank a list of stocks for optimizing investment
decision making, aiming at minimizing investment risks while maximizing profit
returns. Recently, researchers have developed various (recurrent) neural
network-based methods to tackle this problem. Without exceptions, they
primarily leverage historical market volatility to enhance the selection
performance. However, these approaches greatly rely on discrete sampled market
observations, which either fail to consider the uncertainty of stock
fluctuations or predict continuous stock dynamics in the future. Besides, some
studies have considered the explicit stock interdependence derived from
multiple domains (e.g., industry and shareholder). Nevertheless, the implicit
cross-dependencies among different domains are under-explored. To address such
limitations, we present a novel stock selection solution -- StockODE, a latent
variable model with Gaussian prior. Specifically, we devise a Movement Trend
Correlation module to expose the time-varying relationships regarding stock
movements. We design Neural Recursive Ordinary Differential Equation Networks
(NRODEs) to capture the temporal evolution of stock volatility in a continuous
dynamic manner. Moreover, we build a hierarchical hypergraph to incorporate the
domain-aware dependencies among the stocks. Experiments conducted on two
real-world stock market datasets demonstrate that StockODE significantly
outperforms several baselines, such as up to 18.57% average improvement
regarding Sharpe Ratio.
Related papers
- PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
We propose a novel graph learning approach implemented without expert knowledge to address these issues.
First, our approach automatically constructs dynamic stock graphs by entropy-driven edge generation from a signal processing perspective.
Last, a decoupled representation learning scheme is adopted to capture distinctive hierarchical intra-stock features.
arXiv Detail & Related papers (2024-01-03T17:36:27Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
This paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network.
Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and abrupt events.
Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets.
arXiv Detail & Related papers (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction [20.879245331384794]
Recent deep neural network (DNN) methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution.
We propose a framework for stock movement prediction to overcome the above issues.
Our framework outperforms state-of-the-art methods in terms of profit and stability.
arXiv Detail & Related papers (2022-11-11T01:58:18Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
We present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction.
A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks.
In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks.
arXiv Detail & Related papers (2021-07-22T02:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.