EP-GAT: Energy-based Parallel Graph Attention Neural Network for Stock Trend Classification
- URL: http://arxiv.org/abs/2507.08184v1
- Date: Thu, 10 Jul 2025 21:45:09 GMT
- Title: EP-GAT: Energy-based Parallel Graph Attention Neural Network for Stock Trend Classification
- Authors: Zhuodong Jiang, Pengju Zhang, Peter Martin,
- Abstract summary: This work presents the Energy-based Parallel Graph Attention Neural Network, a novel approach for predicting future movements for multiple stocks.<n>Experiments on five real-world datasets are conducted to validate the proposed approach.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks have shown remarkable performance in forecasting stock movements, which arises from learning complex inter-dependencies between stocks and intra-dynamics of stocks. Existing approaches based on graph neural networks typically rely on static or manually defined factors to model changing inter-dependencies between stocks. Furthermore, these works often struggle to preserve hierarchical features within stocks. To bridge these gaps, this work presents the Energy-based Parallel Graph Attention Neural Network, a novel approach for predicting future movements for multiple stocks. First, it generates a dynamic stock graph with the energy difference between stocks and Boltzmann distribution, capturing evolving inter-dependencies between stocks. Then, a parallel graph attention mechanism is proposed to preserve the hierarchical intra-stock dynamics. Extensive experiments on five real-world datasets are conducted to validate the proposed approach, spanning from the US stock markets (NASDAQ, NYSE, SP) and UK stock markets (FTSE, LSE). The experimental results demonstrate that EP-GAT consistently outperforms competitive five baselines on test periods across various metrics. The ablation studies and hyperparameter sensitivity analysis further validate the effectiveness of each module in the proposed method.
Related papers
- Rethinking Link Prediction for Directed Graphs [73.36395969796804]
Link prediction for directed graphs is a crucial task with diverse real-world applications.<n>Recent advances in embedding methods and Graph Neural Networks (GNNs) have shown promising improvements.<n>We propose a unified framework to assess the expressiveness of existing methods, highlighting the impact of dual embeddings and decoder design on directed link prediction performance.
arXiv Detail & Related papers (2025-02-08T23:51:05Z) - MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive
and Dynamic Stock Investment Prediction [22.430266982219496]
Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed.
Our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods.
arXiv Detail & Related papers (2024-01-19T02:51:29Z) - Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
We propose a graph-based representation learning approach aimed at predicting future movements of multiple stocks.
Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years.
arXiv Detail & Related papers (2024-01-05T17:15:45Z) - DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
We propose a novel graph learning approach implemented without expert knowledge to address these issues.
First, our approach automatically constructs dynamic stock graphs by entropy-driven edge generation from a signal processing perspective.
Last, a decoupled representation learning scheme is adopted to capture distinctive hierarchical intra-stock features.
arXiv Detail & Related papers (2024-01-03T17:36:27Z) - Out-of-Distribution Generalized Dynamic Graph Neural Network with
Disentangled Intervention and Invariance Promotion [61.751257172868186]
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph and temporal dynamics.
Existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs.
arXiv Detail & Related papers (2023-11-24T02:42:42Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction [20.879245331384794]
Recent deep neural network (DNN) methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution.
We propose a framework for stock movement prediction to overcome the above issues.
Our framework outperforms state-of-the-art methods in terms of profit and stability.
arXiv Detail & Related papers (2022-11-11T01:58:18Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
We present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction.
A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks.
In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks.
arXiv Detail & Related papers (2021-07-22T02:16:09Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
We benchmark several existing graph neural network (GNN) models on different datasets for link predictions.
Our experiments show these GNN architectures perform similarly on various benchmarks for link prediction tasks.
arXiv Detail & Related papers (2021-02-24T20:57:16Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.