Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction
- URL: http://arxiv.org/abs/2211.07400v1
- Date: Fri, 11 Nov 2022 01:58:18 GMT
- Title: Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction
- Authors: Thanh Trung Huynh and Minh Hieu Nguyen and Thanh Tam Nguyen and Phi Le
Nguyen and Matthias Weidlich and Quoc Viet Hung Nguyen and Karl Aberer
- Abstract summary: Recent deep neural network (DNN) methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution.
We propose a framework for stock movement prediction to overcome the above issues.
Our framework outperforms state-of-the-art methods in terms of profit and stability.
- Score: 20.879245331384794
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in deep neural network (DNN) architectures have enabled new
prediction techniques for stock market data. Unlike other multivariate
time-series data, stock markets show two unique characteristics: (i)
\emph{multi-order dynamics}, as stock prices are affected by strong
non-pairwise correlations (e.g., within the same industry); and (ii)
\emph{internal dynamics}, as each individual stock shows some particular
behaviour. Recent DNN-based methods capture multi-order dynamics using
hypergraphs, but rely on the Fourier basis in the convolution, which is both
inefficient and ineffective. In addition, they largely ignore internal dynamics
by adopting the same model for each stock, which implies a severe information
loss.
In this paper, we propose a framework for stock movement prediction to
overcome the above issues. Specifically, the framework includes temporal
generative filters that implement a memory-based mechanism onto an LSTM network
in an attempt to learn individual patterns per stock. Moreover, we employ
hypergraph attentions to capture the non-pairwise correlations. Here, using the
wavelet basis instead of the Fourier basis, enables us to simplify the message
passing and focus on the localized convolution. Experiments with US market data
over six years show that our framework outperforms state-of-the-art methods in
terms of profit and stability. Our source code and data are available at
\url{https://github.com/thanhtrunghuynh93/estimate}.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
We propose a graph-based representation learning approach aimed at predicting future movements of multiple stocks.
Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years.
arXiv Detail & Related papers (2024-01-05T17:15:45Z) - DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
We propose a novel graph learning approach implemented without expert knowledge to address these issues.
First, our approach automatically constructs dynamic stock graphs by entropy-driven edge generation from a signal processing perspective.
Last, a decoupled representation learning scheme is adopted to capture distinctive hierarchical intra-stock features.
arXiv Detail & Related papers (2024-01-03T17:36:27Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
We present a novel approach to predict long-term daily stock price change trends with fully 2D-convolutional encoder-decoders.
Our hierarchical structure of CNNs makes it capable of capturing both long and short-term temporal relationships effectively.
arXiv Detail & Related papers (2023-03-09T01:29:09Z) - Incorporating Interactive Facts for Stock Selection via Neural Recursive
ODEs [30.629948593098273]
We present StockODE, a latent variable model with Gaussian prior.
We design Neural Recursive Ordinary Differential Equation Networks (NRODEs) to capture the temporal evolution of stock volatility.
Experiments conducted on two real-world stock market datasets demonstrate that StockODE significantly outperforms several baselines.
arXiv Detail & Related papers (2022-10-28T06:14:02Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.