論文の概要: Improving Multi-class Classifier Using Likelihood Ratio Estimation with
Regularization
- arxiv url: http://arxiv.org/abs/2210.16033v1
- Date: Fri, 28 Oct 2022 10:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 15:30:51.102257
- Title: Improving Multi-class Classifier Using Likelihood Ratio Estimation with
Regularization
- Title(参考訳): 確率比推定と正則化を用いた多クラス分類器の改良
- Authors: Masato Kikuchi, Tadachika Ozono
- Abstract要約: 確率比 (LRs) を用いて定義された広義ベイズ分類器 (UNB)cite Komiya:13 は不均衡な分類問題に対処するために提案された。
UNBで使用されるLR推定器は、低周波データに対してLRを過大評価し、分類性能を低下させる。
不均衡データを用いた実験により,正規化パラメータを用いてクラスバランスに応じて分類スコアを効果的に調整できることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The universal-set naive Bayes classifier (UNB)~\cite{Komiya:13}, defined
using likelihood ratios (LRs), was proposed to address imbalanced
classification problems. However, the LR estimator used in the UNB
overestimates LRs for low-frequency data, degrading the classification
performance. Our previous study~\cite{Kikuchi:19} proposed an effective LR
estimator even for low-frequency data. This estimator uses regularization to
suppress the overestimation, but we did not consider imbalanced data. In this
paper, we integrated the estimator with the UNB. Our experiments with
imbalanced data showed that our proposed classifier effectively adjusts the
classification scores according to the class balance using regularization
parameters and improves the classification performance.
- Abstract(参考訳): unb)~\cite{komiya:13}をlrsを用いて定義し,不均衡な分類問題に対処するための普遍セットナイーブベイズ分類器を提案した。
しかし、UNBで使用されるLR推定器は低周波データに対してLRを過大評価し、分類性能を低下させる。
従来の研究では、低周波データにおいても有効なLR推定器が提案されている。
この推定器は正規化を用いて過大評価を抑えるが、不均衡なデータは考慮しなかった。
本稿では,推定器とUNBを統合した。
不均衡データを用いた実験により,クラスバランスに応じて分類スコアを効果的に調整し,分類性能を向上させることができた。
関連論文リスト
- Robust performance metrics for imbalanced classification problems [2.07180164747172]
Fスコアのようなバイナリ分類における確立された性能指標は、クラス不均衡に対して堅牢ではないことを示す。
我々は、FスコアとMCCの堅牢な修正を導入し、強い不均衡な設定であっても、TPRは0ドルから切り離される。
論文 参考訳(メタデータ) (2024-04-11T11:50:05Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
few-shot object detection (FSOD)では、重度のサンプル不均衡を軽減するために、2段階の訓練パラダイムが広く採用されている。
残念ながら、極端なデータ不足は、提案の分布バイアスを増大させ、RoIヘッドが新しいクラスに進化するのを妨げます。
本稿では,RoIヘッドのローカライゼーションと分類能力を高めるために,単純かつ効果的な提案分布キャリブレーション(PDC)手法を提案する。
論文 参考訳(メタデータ) (2022-12-15T05:09:11Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Robust Importance Sampling for Error Estimation in the Context of
Optimal Bayesian Transfer Learning [13.760785726194591]
最適ベイズ移動学習のための最小平均二乗誤差推定器(MMSE)を新たに導入する。
提案した推定器を用いて,多様な学習能力にまたがる幅広い分類器の分類精度を評価する。
合成データと実世界のRNAシークエンシング(RNA-seq)データの両方に基づく実験結果から,提案したOBTL誤差推定手法が標準誤差推定器より明らかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-05T19:11:33Z) - Re-Assessing the "Classify and Count" Quantification Method [88.60021378715636]
分類とカウント(CC)は、しばしば偏りのある推定器である。
以前の作業では、CCの適切に最適化されたバージョンを適切に使用できなかった。
最先端の手法に劣っているものの、ほぼ最先端の精度を実現している、と我々は主張する。
論文 参考訳(メタデータ) (2020-11-04T21:47:39Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
不均衡なデータセットのクラス分布スキューは、多数派クラスに対する予測バイアスのあるモデルにつながる可能性がある。
本稿では,不均衡なデータ分類のための簡易かつ汎用的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-12T19:47:09Z) - On Model Evaluation under Non-constant Class Imbalance [0.0]
多くの実世界の分類問題は、関心の階級の有害さと著しくクラス不均衡である。
通常の仮定では、テストデータセットの不均衡は実世界の不均衡と等しい。
非コンスタントクラス不均衡下での評価に焦点をあてる手法を提案する。
論文 参考訳(メタデータ) (2020-01-15T21:52:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。