論文の概要: Object Segmentation of Cluttered Airborne LiDAR Point Clouds
- arxiv url: http://arxiv.org/abs/2210.16081v1
- Date: Fri, 28 Oct 2022 11:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 15:23:21.322004
- Title: Object Segmentation of Cluttered Airborne LiDAR Point Clouds
- Title(参考訳): 航空機搭載LiDAR点雲の物体セグメンテーション
- Authors: Mariona Caros, Ariadna Just, Santi Segui, Jordi Vitria
- Abstract要約: クラッタで囲まれた任意の数のLiDARポイントによって定義されるオブジェクトの検出とセグメンテーションを自動化するためのエンドツーエンドのディープラーニングフレームワークを提案する。
本手法は,オブジェクト認識とセグメンテーションの両タスクにおいて,優れた性能を実現するPointNetの軽量バージョンをベースとしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Airborne topographic LiDAR is an active remote sensing technology that emits
near-infrared light to map objects on the Earth's surface. Derived products of
LiDAR are suitable to service a wide range of applications because of their
rich three-dimensional spatial information and their capacity to obtain
multiple returns. However, processing point cloud data still requires a
significant effort in manual editing. Certain human-made objects are difficult
to detect because of their variety of shapes, irregularly-distributed point
clouds, and low number of class samples. In this work, we propose an end-to-end
deep learning framework to automatize the detection and segmentation of objects
defined by an arbitrary number of LiDAR points surrounded by clutter. Our
method is based on a light version of PointNet that achieves good performance
on both object recognition and segmentation tasks. The results are tested
against manually delineated power transmission towers and show promising
accuracy.
- Abstract(参考訳): airborne topographic lidarは、地球表面の物体をマッピングするために近赤外線を放射するアクティブなリモートセンシング技術である。
LiDARの派生製品は、リッチな3次元空間情報と複数の戻り値を得る能力のため、幅広い用途に適している。
しかし、ポイントクラウドデータの処理には手作業による編集にかなりの労力が要る。
様々な形状、不規則に分散した点雲、低数のクラスサンプルのため、一部の人造物体は検出が困難である。
本研究では,クラッタで囲まれた任意の数のLiDARポイントによって定義されたオブジェクトの検出とセグメンテーションを自動化する,エンドツーエンドのディープラーニングフレームワークを提案する。
本手法は,オブジェクト認識とセグメンテーションの両タスクにおいて,優れた性能を実現するPointNetの軽量バージョンに基づいている。
実験結果は,手動で送電塔を配置し,有望な精度を示す。
関連論文リスト
- STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
正確な3Dオブジェクト検出器をトレーニングするための鍵となる要件は、大量のLiDARベースのポイントクラウドデータが利用できることである。
本稿では,3次元物体検出装置のトレーニングにおけるラベル付けコストを大幅に削減する,統合されたアクティブな3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-04T20:45:33Z) - Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
2D画像特徴を融合させてLiDARポイントクラウドデータを再構成する新しいフレームワークであるLiDAR-Camera Augmentation Network (LCANet)を提案する。
LCANetは、画像特徴を3D空間に投影し、意味情報をポイントクラウドデータに統合することで、LiDARセンサーからのデータを融合する。
この融合は、しばしばスパースポイントで表される長距離物体の検出におけるLiDARの弱点を効果的に補う。
論文 参考訳(メタデータ) (2024-09-23T13:03:31Z) - Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection [16.09503890891102]
我々は,LiDAR点雲のみで動作する教師なし3次元検出手法を提案する。
我々は、クラスタリング、トラッキング、ボックステキスト、ラベルリファインメントなど、LiDARポイントクラウドの固有のCLI時間知識を活用している。
提案手法はオープンデータセット上での最先端の非教師なし3Dオブジェクト検出器よりも優れている。
論文 参考訳(メタデータ) (2024-08-07T14:14:53Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
本稿では,高性能なオフラインLiDARによる3Dオブジェクト検出を実現することを目的とする。
まず、経験豊富な人間のアノテータが、トラック中心の視点でオブジェクトに注釈を付けるのを観察する。
従来のオブジェクト中心の視点ではなく,トラック中心の視点で高性能なオフライン検出器を提案する。
論文 参考訳(メタデータ) (2023-04-24T17:59:05Z) - Learning Object-level Point Augmentor for Semi-supervised 3D Object
Detection [85.170578641966]
半教師付き3次元オブジェクト検出のための局所変換を行うオブジェクトレベルポイント拡張器(OPA)を提案する。
このようにして、結果のオーグメンタは、無関係なバックグラウンドではなく、オブジェクトインスタンスを強調するように導出されます。
ScanNetとSUN RGB-Dデータセットの実験は、提案したOPAが最先端の手法に対して好適に動作することを示している。
論文 参考訳(メタデータ) (2022-12-19T06:56:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDARベースの3Dオブジェクト検出は、自動運転車に大きな影響を与える。
LiDARの固有特性の制限により、センサーから遠く離れた物体において、より少ない点が収集される。
そこで本研究では,SIENetという2段階の3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T07:45:09Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z) - 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction [7.04185696830272]
本研究は、LiDAR点雲の性質を遠距離で考慮し、3次元物体検出器の改良を提案する。
その結果、近距離および長距離オブジェクトのための個別ネットワークのトレーニングは、すべてのKITTIベンチマークの困難さに対するパフォーマンスを高めることが示された。
論文 参考訳(メタデータ) (2020-03-02T13:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。