論文の概要: Learning with Multigraph Convolutional Filters
- arxiv url: http://arxiv.org/abs/2210.16272v1
- Date: Fri, 28 Oct 2022 17:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 17:35:37.172666
- Title: Learning with Multigraph Convolutional Filters
- Title(参考訳): マルチグラフ畳み込みフィルタによる学習
- Authors: Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro
- Abstract要約: MSPモデルに基づいて情報を処理する階層構造として多グラフ畳み込みニューラルネットワーク(MGNN)を導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コストな手法を開発した。
- 参考スコア(独自算出の注目度): 153.20329791008095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a convolutional architecture to perform learning
when information is supported on multigraphs. Exploiting algebraic signal
processing (ASP), we propose a convolutional signal processing model on
multigraphs (MSP). Then, we introduce multigraph convolutional neural networks
(MGNNs) as stacked and layered structures where information is processed
according to an MSP model. We also develop a procedure for tractable
computation of filter coefficients in the MGNN and a low cost method to reduce
the dimensionality of the information transferred between layers. We conclude
by comparing the performance of MGNNs against other learning architectures on
an optimal resource allocation task for multi-channel communication systems.
- Abstract(参考訳): 本稿では,マルチグラフ上で情報をサポートする場合に学習を行う畳み込みアーキテクチャを提案する。
代数的信号処理(asp)を活用し,マルチグラフ(msp)上の畳み込み信号処理モデルを提案する。
次に,多グラフ畳み込みニューラルネットワーク(MGNN)を,MSPモデルに基づいて情報を処理する階層構造として導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コスト手法を開発した。
我々は,マルチチャネル通信システムにおける最適資源割り当てタスクにおいて,MGNNの性能を他の学習アーキテクチャと比較することで結論付けた。
関連論文リスト
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Convolutional Learning on Multigraphs [153.20329791008095]
我々は、多グラフ上の畳み込み情報処理を開発し、畳み込み多グラフニューラルネットワーク(MGNN)を導入する。
情報拡散の複雑なダイナミクスを多グラフのエッジのクラス間で捉えるために、畳み込み信号処理モデルを定式化する。
我々は,計算複雑性を低減するため,サンプリング手順を含むマルチグラフ学習アーキテクチャを開発した。
導入されたアーキテクチャは、最適な無線リソース割り当てとヘイトスピーチローカライゼーションタスクに適用され、従来のグラフニューラルネットワークよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-09-23T00:33:04Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
我々は潜在指標層と呼ばれる手法を開発し、暗黙的な階層的情報を特定し学習する。
また、トレーニングにおいて潜在指標層を扱うEMアルゴリズムを開発した。
ブートストラップトレーニングによるEM-HRNNモデルは,文書分類タスクにおいて,他のRNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-21T23:08:33Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
本稿では,一方の畳み込みネットワーク(cnn)から他方へ,スパース表現を用いて中間知識を伝達するスパース表現マッチング(srm)を提案する。
勾配降下を利用して効率的に最適化し、任意のCNNにプラグアンドプレイで統合できるニューラルプロセッシングブロックとして定式化します。
実験の結果,教師と生徒のネットワーク間のアーキテクチャの違いに頑健であり,複数のデータセットにまたがる他のkd技術よりも優れていた。
論文 参考訳(メタデータ) (2021-03-31T11:47:47Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
グラフ畳み込みネットワーク(GCN)は、隣人層の情報を層ごとに集約することでノードの埋め込みを生成する。
GCNの高計算とメモリコストにより、大きなグラフのトレーニングが不可能になる。
MG-GCNと呼ばれる新しいモデルでは、精度、トレーニング速度、収束速度、メモリコストの点で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-11-17T14:51:57Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
デジタル病理画像セグメンテーションタスクにおいて、ディープニューラルネットワークと高い競争力を持つ、容易に訓練されながら強力な表現学習手法を提案する。
ScD2TEと略すこの手法はスパースコーディング駆動の深層決定木アンサンブルと呼ばれ、表現学習の新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-13T02:59:31Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。