Learning with Multigraph Convolutional Filters
- URL: http://arxiv.org/abs/2210.16272v1
- Date: Fri, 28 Oct 2022 17:00:50 GMT
- Title: Learning with Multigraph Convolutional Filters
- Authors: Landon Butler, Alejandro Parada-Mayorga, Alejandro Ribeiro
- Abstract summary: We introduce multigraph convolutional neural networks (MGNNs) as stacked and layered structures where information is processed according to an MSP model.
We also develop a procedure for tractable computation of filter coefficients in the MGNNs and a low cost method to reduce the dimensionality of the information transferred between layers.
- Score: 153.20329791008095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a convolutional architecture to perform learning
when information is supported on multigraphs. Exploiting algebraic signal
processing (ASP), we propose a convolutional signal processing model on
multigraphs (MSP). Then, we introduce multigraph convolutional neural networks
(MGNNs) as stacked and layered structures where information is processed
according to an MSP model. We also develop a procedure for tractable
computation of filter coefficients in the MGNN and a low cost method to reduce
the dimensionality of the information transferred between layers. We conclude
by comparing the performance of MGNNs against other learning architectures on
an optimal resource allocation task for multi-channel communication systems.
Related papers
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
We develop an approach called the latent indicator layer to identify and learn implicit hierarchical information.
We also develop an EM algorithm to handle the latent indicator layer in training.
We show that the EM-HRNN model with bootstrap training outperforms other RNN-based models in document classification tasks.
arXiv Detail & Related papers (2022-01-21T23:08:33Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
We propose Sparse Representation Matching (SRM) to transfer intermediate knowledge from one Convolutional Network (CNN) to another by utilizing sparse representation.
We formulate as a neural processing block, which can be efficiently optimized using gradient descent and integrated into any CNN in a plug-and-play manner.
Our experiments demonstrate that is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
arXiv Detail & Related papers (2021-03-31T11:47:47Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
Graph convolutional networks (GCNs) generate the embeddings of nodes by aggregating the information of their neighbors layer by layer.
The high computational and memory cost of GCNs makes it infeasible for training on large graphs.
A new model, named Mix-grained GCN (MG-GCN), achieves state-of-the-art performance in terms of accuracy, training speed, convergence speed, and memory cost.
arXiv Detail & Related papers (2020-11-17T14:51:57Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.