論文の概要: DeFIX: Detecting and Fixing Failure Scenarios with Reinforcement
Learning in Imitation Learning Based Autonomous Driving
- arxiv url: http://arxiv.org/abs/2210.16567v1
- Date: Sat, 29 Oct 2022 10:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 14:54:59.757121
- Title: DeFIX: Detecting and Fixing Failure Scenarios with Reinforcement
Learning in Imitation Learning Based Autonomous Driving
- Title(参考訳): DeFIX:模倣学習に基づく自律運転における強化学習による障害シナリオの検出と修正
- Authors: Resul Dagdanov, Feyza Eksen, Halil Durmus, Ferhat Yurdakul, Nazim
Kemal Ure
- Abstract要約: 本稿では,ILエージェントの検出とFIX障害に対する強化学習(RL)に基づく方法論を提案する。
DeFIXは継続的学習フレームワークで、障害シナリオの抽出とRLエージェントのトレーニングを無限ループで実行する。
ILエージェントの故障シナリオを訓練したRLエージェントが1つあれば、DeFIX法は競争力があるか、最先端のILおよびRLベースの自律都市運転ベンチマークより優れていることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safely navigating through an urban environment without violating any traffic
rules is a crucial performance target for reliable autonomous driving. In this
paper, we present a Reinforcement Learning (RL) based methodology to DEtect and
FIX (DeFIX) failures of an Imitation Learning (IL) agent by extracting
infraction spots and re-constructing mini-scenarios on these infraction areas
to train an RL agent for fixing the shortcomings of the IL approach. DeFIX is a
continuous learning framework, where extraction of failure scenarios and
training of RL agents are executed in an infinite loop. After each new policy
is trained and added to the library of policies, a policy classifier method
effectively decides on which policy to activate at each step during the
evaluation. It is demonstrated that even with only one RL agent trained on
failure scenario of an IL agent, DeFIX method is either competitive or does
outperform state-of-the-art IL and RL based autonomous urban driving
benchmarks. We trained and validated our approach on the most challenging map
(Town05) of CARLA simulator which involves complex, realistic, and adversarial
driving scenarios. The source code is publicly available at
https://github.com/data-and-decision-lab/DeFIX
- Abstract(参考訳): 交通規則に違反することなく都市環境を安全に航行することは、信頼できる自動運転にとって重要なパフォーマンス目標である。
本稿では,ilアプローチの欠点を解消するためのrlエージェントを訓練するために,これらの非破壊領域の破れ点を抽出し,ミニスセナリオを再構築することにより,模倣学習(il)エージェントの故障を検出・修正(修正)するための強化学習(rl)手法を提案する。
DeFIXは継続的学習フレームワークで、障害シナリオの抽出とRLエージェントのトレーニングを無限ループで実行する。
各新方針を訓練し、政策ライブラリに追加した後、ポリシー分類法は、評価中の各ステップでどのポリシーを活性化するかを効果的に決定する。
ILエージェントの故障シナリオを訓練したRLエージェントが1つあれば、DeFIX法は競争力があるか、最先端のILおよびRLベースの自律都市運転ベンチマークより優れていることが示されている。
複雑で現実的な運転シナリオを含むcarlaシミュレータの最も挑戦的なマップ(town05)で、我々のアプローチをトレーニングし、検証しました。
ソースコードはhttps://github.com/data-and-decision-lab/DeFIXで公開されている。
関連論文リスト
- CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving [45.05135725542318]
CIMRL(imitation and Reinforcement Learning)アプローチは、模倣動作の先行と安全性の制約を活用することで、シミュレーションにおける運転ポリシーのトレーニングを可能にする。
RLと模倣を組み合わせることで, クローズドループシミュレーションと実世界の運転ベンチマークにおいて, 最先端の結果が得られたことを実証する。
論文 参考訳(メタデータ) (2024-06-13T07:31:29Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Self-Improving Safety Performance of Reinforcement Learning Based
Driving with Black-Box Verification Algorithms [0.0]
本稿では,強化学習(RL)に基づく自律運転(AD)エージェントの安全性向上を目的とした,自己改善型人工知能システムを提案する。
提案手法は,RLベースの適応クルーズ制御(ACC)アプリケーションにおいて,行動決定の安全性上の障害を効果的に発見する。
論文 参考訳(メタデータ) (2022-10-29T11:34:17Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
本稿では,自律運転のための強化学習アルゴリズムを開発するオープンソース環境であるDeadGymを提案する。
DriverGymは1000時間以上の専門家ログデータへのアクセスを提供し、リアクティブおよびデータ駆動エージェントの動作をサポートする。
広範かつフレキシブルなクローズループ評価プロトコルを用いて,実世界のデータ上でRLポリシーの性能を容易に検証できる。
論文 参考訳(メタデータ) (2021-11-12T11:47:08Z) - A Reinforcement Learning Benchmark for Autonomous Driving in
Intersection Scenarios [11.365750371241154]
本稿では,RL-CISと呼ばれる複雑な交差点シナリオにおける自律走行エージェントの訓練と試験のためのベンチマークを提案する。
テストベンチマークとベースラインは、交差点シナリオにおける自動運転のためのRLの研究のための公平で包括的なトレーニングおよびテストプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-09-22T07:38:23Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
本研究では,実世界のトラフィックに基づくCARLAシミュレータにおけるインタラクティブな交通シナリオについて紹介する。
我々は数秒間続く戦術的タスクに集中しており、これは現在の制御方法では特に困難である。
CARLA Real Traffic Scenarios(CRTS)は、自動運転システムのトレーニングとテストの場になることを意図しています。
論文 参考訳(メタデータ) (2020-12-16T13:20:39Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
ミニチュアレースカープラットフォーム上で自律的なレースを行うための強化学習ベースのソリューションを提案する。
シミュレーションで純粋に訓練されたポリシーは、実際のロボットのセットアップにうまく移行できることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。