論文の概要: A Reinforcement Learning Benchmark for Autonomous Driving in
Intersection Scenarios
- arxiv url: http://arxiv.org/abs/2109.10557v1
- Date: Wed, 22 Sep 2021 07:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 13:40:45.226154
- Title: A Reinforcement Learning Benchmark for Autonomous Driving in
Intersection Scenarios
- Title(参考訳): インターセクションシナリオにおける自律走行のための強化学習ベンチマーク
- Authors: Yuqi Liu, Qichao Zhang and Dongbin Zhao
- Abstract要約: 本稿では,RL-CISと呼ばれる複雑な交差点シナリオにおける自律走行エージェントの訓練と試験のためのベンチマークを提案する。
テストベンチマークとベースラインは、交差点シナリオにおける自動運転のためのRLの研究のための公平で包括的なトレーニングおよびテストプラットフォームを提供する。
- 参考スコア(独自算出の注目度): 11.365750371241154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, control under urban intersection scenarios becomes an
emerging research topic. In such scenarios, the autonomous vehicle confronts
complicated situations since it must deal with the interaction with social
vehicles timely while obeying the traffic rules. Generally, the autonomous
vehicle is supposed to avoid collisions while pursuing better efficiency. The
existing work fails to provide a framework that emphasizes the integrity of the
scenarios while being able to deploy and test reinforcement learning(RL)
methods. Specifically, we propose a benchmark for training and testing RL-based
autonomous driving agents in complex intersection scenarios, which is called
RL-CIS. Then, a set of baselines are deployed consists of various algorithms.
The test benchmark and baselines are to provide a fair and comprehensive
training and testing platform for the study of RL for autonomous driving in the
intersection scenario, advancing the progress of RL-based methods for
intersection autonomous driving control. The code of our proposed framework can
be found at https://github.com/liuyuqi123/ComplexUrbanScenarios.
- Abstract(参考訳): 近年,都市交差点のシナリオ下での制御が研究課題となっている。
このようなシナリオでは、自動運転車は交通規則に従って社会的な車両との対話をタイムリーに処理しなければならないため、複雑な状況に直面する。
一般的に、自動運転車は衝突を避けながら効率を向上する。
既存の作業は、強化学習(RL)メソッドのデプロイとテストを可能にしながら、シナリオの整合性を強調するフレームワークの提供に失敗している。
具体的には、RL-CISと呼ばれる複雑な交差点シナリオにおけるRLベースの自律運転エージェントの訓練と試験のためのベンチマークを提案する。
次に、一連のベースラインをデプロイし、さまざまなアルゴリズムから構成する。
テストベンチマークとベースラインは、交差点シナリオにおける自律運転のためのRLの研究のための公平で包括的なトレーニングおよびテストプラットフォームを提供することであり、交差点自律運転制御のためのRLベースの手法の進歩を前進させる。
提案されたフレームワークのコードはhttps://github.com/liuyuqi123/complexurbanscenariosにあります。
関連論文リスト
- A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry [0.0]
本研究では,車体前方移動動作を制御するハイウェイランプ機能について検討し,車体が進入する高速道路交通の流れとの衝突を最小限に抑える。
我々はこの問題に対してゲーム理論的マルチエージェント(MA)アプローチを採用し、深層強化学習(DRL)に基づくコントローラの利用について検討する。
本稿では,2台以上の車両(エージェント)の相互作用を研究することで既存の作業を拡張し,交通量やエゴカーを付加して道路シーンを体系的に拡張する。
論文 参考訳(メタデータ) (2024-11-21T21:23:46Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - DeFIX: Detecting and Fixing Failure Scenarios with Reinforcement
Learning in Imitation Learning Based Autonomous Driving [0.0]
本稿では,ILエージェントの検出とFIX障害に対する強化学習(RL)に基づく方法論を提案する。
DeFIXは継続的学習フレームワークで、障害シナリオの抽出とRLエージェントのトレーニングを無限ループで実行する。
ILエージェントの故障シナリオを訓練したRLエージェントが1つあれば、DeFIX法は競争力があるか、最先端のILおよびRLベースの自律都市運転ベンチマークより優れていることが示されている。
論文 参考訳(メタデータ) (2022-10-29T10:58:43Z) - Adaptive Decision Making at the Intersection for Autonomous Vehicles
Based on Skill Discovery [13.134487965031667]
都市環境では、複雑で不確実な交差点のシナリオは自動運転にとって困難である。
安全性を確保するためには、他の車両とのインタラクションを処理できる適応的な意思決定システムを開発することが不可欠である。
知識を自律的に蓄積し再利用できる階層的な枠組みを提案する。
論文 参考訳(メタデータ) (2022-07-24T11:56:45Z) - Evaluating the Robustness of Deep Reinforcement Learning for Autonomous
Policies in a Multi-agent Urban Driving Environment [3.8073142980733]
視覚に基づく自律運転における深層強化学習の比較のためのベンチマークフレームワークを提案する。
この実験は、視覚のみの高忠実度都市運転模擬環境で実施する。
その結果, 深層強化学習アルゴリズムのいくつかは, シングルエージェントとマルチエージェントのシナリオで一貫した性能向上を実現していることがわかった。
論文 参考訳(メタデータ) (2021-12-22T15:14:50Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
本研究では,実世界のトラフィックに基づくCARLAシミュレータにおけるインタラクティブな交通シナリオについて紹介する。
我々は数秒間続く戦術的タスクに集中しており、これは現在の制御方法では特に困難である。
CARLA Real Traffic Scenarios(CRTS)は、自動運転システムのトレーニングとテストの場になることを意図しています。
論文 参考訳(メタデータ) (2020-12-16T13:20:39Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
マルチエージェントインタラクションは、現実の世界における自律運転の基本的な側面である。
研究と開発が10年以上続いたにもかかわらず、様々なシナリオで多様な道路ユーザーと対話する方法の問題は未解決のままである。
SMARTSと呼ばれる,多種多様な運転インタラクションを生成する専用シミュレーションプラットフォームを開発した。
論文 参考訳(メタデータ) (2020-10-19T18:26:10Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。