論文の概要: Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders
- arxiv url: http://arxiv.org/abs/2210.16844v1
- Date: Sun, 30 Oct 2022 13:45:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 18:12:41.226725
- Title: Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders
- Title(参考訳): グラフ変動オートエンコーダのためのマイクロおよびマクロレベルグラフモデリング
- Authors: Kiarash Zahirnia, Oliver Schulte, Parmis Naddaf, Ke Li
- Abstract要約: 本稿では,ノードレベルの特性とグラフレベルの統計を協調的にモデル化する,新しいマルチレベルフレームワークを提案する。
本稿では,ノードレベルとグラフレベルの損失を組み合わせたグラフ生成のための新しいマイクロマクロトレーニング手法を提案する。
実験の結果,GraphVAEモデルにマイクロマクロモデリングを追加することで,5つのベンチマークデータセットにおいて最大2桁のグラフ品質スコアが向上することがわかった。
- 参考スコア(独自算出の注目度): 16.302222204710276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models for graph data are an important research topic in machine
learning. Graph data comprise two levels that are typically analyzed
separately: node-level properties such as the existence of a link between a
pair of nodes, and global aggregate graph-level statistics, such as motif
counts. This paper proposes a new multi-level framework that jointly models
node-level properties and graph-level statistics, as mutually reinforcing
sources of information. We introduce a new micro-macro training objective for
graph generation that combines node-level and graph-level losses. We utilize
the micro-macro objective to improve graph generation with a GraphVAE, a
well-established model based on graph-level latent variables, that provides
fast training and generation time for medium-sized graphs. Our experiments show
that adding micro-macro modeling to the GraphVAE model improves graph quality
scores up to 2 orders of magnitude on five benchmark datasets, while
maintaining the GraphVAE generation speed advantage.
- Abstract(参考訳): グラフデータの生成モデルは、機械学習において重要な研究テーマである。
グラフデータは、ノードの対間のリンクの存在のようなノードレベルの特性と、モチーフ数のようなグローバル集約グラフレベルの統計である。
本稿では,ノードレベルの特性とグラフレベルの統計を相互にモデル化し,相互に情報源を補強する新しいマルチレベルフレームワークを提案する。
ノードレベルの損失とグラフレベルの損失を組み合わせた,グラフ生成のための新たなマイクロマクロトレーニング目標を提案する。
マイクロマクロの目的は,グラフレベルの潜在変数に基づく確立されたモデルであるgraphvaeを用いて,中規模のグラフに対して高速なトレーニングと生成時間を提供する。
実験の結果,GraphVAEモデルにマイクロマクロモデリングを追加することで,ベンチマークデータセットの最大2桁のグラフ品質スコアが向上し,GraphVAE生成速度の優位性が維持されることがわかった。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
グラフニューラルネットワーク(GNN)は、グラフ分類タスクにおいて優れたパフォーマンスを得るために、多数のラベル付きグラフサンプルを必要とする。
ラベル付きグラフサンプルの減少に伴い, GNNの性能は著しく低下する。
本稿では,新しいラベル付きグラフサンプルを生成するための混合グラフ拡張法を提案する。
論文 参考訳(メタデータ) (2023-09-18T20:17:10Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Generating the Graph Gestalt: Kernel-Regularized Graph Representation
Learning [47.506013386710954]
グラフデータの完全な科学的理解は、グローバル構造とローカル構造の両方に対処する必要がある。
本稿では,グラフVAEフレームワークにおける相補的目的として,両者のジョイントモデルを提案する。
実験により,生成したグラフ構造の現実性は,典型的には1-2桁のグラフ構造メトリクスによって著しく向上したことが示された。
論文 参考訳(メタデータ) (2021-06-29T10:48:28Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。