論文の概要: Graph Alignment for Benchmarking Graph Neural Networks and Learning Positional Encodings
- arxiv url: http://arxiv.org/abs/2505.13087v1
- Date: Mon, 19 May 2025 13:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.608217
- Title: Graph Alignment for Benchmarking Graph Neural Networks and Learning Positional Encodings
- Title(参考訳): グラフニューラルネットワークのベンチマークと位置符号化学習のためのグラフアライメント
- Authors: Adrien Lagesse, Marc Lelarge,
- Abstract要約: 本稿では,グラフアライメント問題に基づくグラフニューラルネットワーク(GNN)の新しいベンチマーク手法を提案する。
我々は,この問題を自己教師付き学習タスクとして捉え,グラフアライメントデータセットを生成するいくつかの方法を提案する。
実験により、異方性グラフニューラルネットワークは標準的な畳み込みアーキテクチャより優れていることが示された。
- 参考スコア(独自算出の注目度): 4.343110120255532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel benchmarking methodology for graph neural networks (GNNs) based on the graph alignment problem, a combinatorial optimization task that generalizes graph isomorphism by aligning two unlabeled graphs to maximize overlapping edges. We frame this problem as a self-supervised learning task and present several methods to generate graph alignment datasets using synthetic random graphs and real-world graph datasets from multiple domains. For a given graph dataset, we generate a family of graph alignment datasets with increasing difficulty, allowing us to rank the performance of various architectures. Our experiments indicate that anisotropic graph neural networks outperform standard convolutional architectures. To further demonstrate the utility of the graph alignment task, we show its effectiveness for unsupervised GNN pre-training, where the learned node embeddings outperform other positional encodings on three molecular regression tasks and achieve state-of-the-art results on the PCQM4Mv2 dataset with significantly fewer parameters. To support reproducibility and further research, we provide an open-source Python package to generate graph alignment datasets and benchmark new GNN architectures.
- Abstract(参考訳): 本稿では,グラフアライメント問題に基づくグラフニューラルネットワーク(GNN)の新しいベンチマーク手法を提案する。
本稿では,この問題を自己教師型学習課題として捉え,複数の領域から合成ランダムグラフと実世界のグラフデータセットを用いてグラフアライメントデータセットを生成する方法を提案する。
与えられたグラフデータセットに対して、難易度の高いグラフアライメントデータセットのファミリーを生成し、様々なアーキテクチャのパフォーマンスをランク付けする。
実験により、異方性グラフニューラルネットワークは標準的な畳み込みアーキテクチャより優れていることが示された。
グラフアライメントタスクの有用性をさらに示すために、学習ノードの埋め込みが3つの分子回帰タスクにおける他の位置エンコーディングよりも優れ、パラメータが大幅に少ないPCQM4Mv2データセットにおける最先端結果が得られる、教師なしGNN事前学習の有効性を示す。
再現性とさらなる研究を支援するため、我々はオープンソースのPythonパッケージを提供し、グラフアライメントデータセットを生成し、新しいGNNアーキテクチャをベンチマークする。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - GraphAlign: Pretraining One Graph Neural Network on Multiple Graphs via Feature Alignment [30.56443056293688]
グラフ自己教師型学習(SSL)は、グラフ構造化データによるマイニングと学習をかなり約束する。
本研究では,グラフニューラルネットワーク(GNN)を,豊富なノード特徴を持つグラフのコレクションにプリトレーニングすることを目的としている。
本稿では,既存のグラフSSLフレームワークにシームレスに統合可能な汎用GraphAlign法を提案する。
論文 参考訳(メタデータ) (2024-06-05T05:22:32Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
PAS(Pooling Architecture Search)を導入してグラフ分類タスクのためのグラフニューラルネットワークフレームワークを設計する。
本稿では,GNNトポロジ設計手法であるF2GNNに基づいて改良を行い,グラフ特性予測タスクにおけるモデルの性能をさらに向上させる。
NAS法は,複数のタスクに対して高い一般化能力を有し,グラフ特性予測タスクの処理における本手法の利点が証明された。
論文 参考訳(メタデータ) (2022-07-13T08:17:48Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。