On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
Learning
- URL: http://arxiv.org/abs/2210.16877v1
- Date: Sun, 30 Oct 2022 16:39:40 GMT
- Title: On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
Learning
- Authors: Dilip Arumugam, Mark K. Ho, Noah D. Goodman, Benjamin Van Roy
- Abstract summary: Decision-making agents in the real world do so under limited information-processing capabilities and without access to cognitive or computational resources.
We present a brief survey of information-theoretic models of capacity-limited decision making in biological and artificial agents.
- Score: 43.19983737333797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Throughout the cognitive-science literature, there is widespread agreement
that decision-making agents operating in the real world do so under limited
information-processing capabilities and without access to unbounded cognitive
or computational resources. Prior work has drawn inspiration from this fact and
leveraged an information-theoretic model of such behaviors or policies as
communication channels operating under a bounded rate constraint. Meanwhile, a
parallel line of work also capitalizes on the same principles from
rate-distortion theory to formalize capacity-limited decision making through
the notion of a learning target, which facilitates Bayesian regret bounds for
provably-efficient learning algorithms. In this paper, we aim to elucidate this
latter perspective by presenting a brief survey of these information-theoretic
models of capacity-limited decision making in biological and artificial agents.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Probing the Decision Boundaries of In-context Learning in Large Language Models [31.977886254197138]
We propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification.
To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregular and non-smooth.
arXiv Detail & Related papers (2024-06-17T06:00:24Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Bayesian Reinforcement Learning with Limited Cognitive Load [43.19983737333797]
Theory of adaptive behavior should account for complex interactions between an agent's learning history, decisions, and capacity constraints.
Recent work in computer science has begun to clarify the principles that shape these dynamics by bridging ideas from reinforcement learning, Bayesian decision-making, and rate-distortion theory.
arXiv Detail & Related papers (2023-05-05T03:29:34Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
The nondeterminism of Deep Learning (DL) training algorithms and its influence on the explainability of neural network (NN) models are investigated.
To discuss the issue, two convolutional neural networks (CNN) have been trained and their results compared.
arXiv Detail & Related papers (2022-02-23T12:06:20Z) - Explaining Black-Box Algorithms Using Probabilistic Contrastive
Counterfactuals [7.727206277914709]
We propose a principled causality-based approach for explaining black-box decision-making systems.
We show how such counterfactuals can quantify the direct and indirect influences of a variable on decisions made by an algorithm.
We show how such counterfactuals can provide actionable recourse for individuals negatively affected by the algorithm's decision.
arXiv Detail & Related papers (2021-03-22T16:20:21Z) - Deep RL With Information Constrained Policies: Generalization in
Continuous Control [21.46148507577606]
We show that a natural constraint on information flow might confer onto artificial agents in continuous control tasks.
We implement a novel Capacity-Limited Actor-Critic (CLAC) algorithm.
Our experiments show that compared to alternative approaches, CLAC offers improvements in generalization between training and modified test environments.
arXiv Detail & Related papers (2020-10-09T15:42:21Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.