Probing the Decision Boundaries of In-context Learning in Large Language Models
- URL: http://arxiv.org/abs/2406.11233v2
- Date: Wed, 24 Jul 2024 05:22:48 GMT
- Title: Probing the Decision Boundaries of In-context Learning in Large Language Models
- Authors: Siyan Zhao, Tung Nguyen, Aditya Grover,
- Abstract summary: We propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification.
To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregular and non-smooth.
- Score: 31.977886254197138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning is a key paradigm in large language models (LLMs) that enables them to generalize to new tasks and domains by simply prompting these models with a few exemplars without explicit parameter updates. Many attempts have been made to understand in-context learning in LLMs as a function of model scale, pretraining data, and other factors. In this work, we propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification. Decision boundaries are straightforward to visualize and provide important information about the qualitative behavior of the inductive biases of standard classifiers. To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregular and non-smooth, regardless of linear separability in the underlying task. This paper investigates the factors influencing these decision boundaries and explores methods to enhance their generalizability. We assess various approaches, including training-free and fine-tuning methods for LLMs, the impact of model architecture, and the effectiveness of active prompting techniques for smoothing decision boundaries in a data-efficient manner. Our findings provide a deeper understanding of in-context learning dynamics and offer practical improvements for enhancing robustness and generalizability of in-context learning.
Related papers
- Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
We investigate how pre-trained Large Language Models can be leveraged to predict in context the dynamics of continuous Markov decision processes.
We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning.
arXiv Detail & Related papers (2024-10-15T15:46:53Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
Foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV)
However, they can not emulate human-like continuous learning due to catastrophic forgetting.
Various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge.
arXiv Detail & Related papers (2024-05-28T23:32:46Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Supervised Fine-Tuning as Inverse Reinforcement Learning [8.044033685073003]
The prevailing approach to aligning Large Language Models (LLMs) typically relies on human or AI feedback.
In our work, we question the efficacy of such datasets and explore various scenarios where alignment with expert demonstrations proves more realistic.
arXiv Detail & Related papers (2024-03-18T17:52:57Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Multicriteria interpretability driven Deep Learning [0.0]
Deep Learning methods are renowned for their performances, yet their lack of interpretability prevents them from high-stakes contexts.
Recent model methods address this problem by providing post-hoc interpretability methods by reverse-engineering the model's inner workings.
We propose a Multicriteria agnostic technique that allows to control the feature effects on the model's outcome by injecting knowledge in the objective function.
arXiv Detail & Related papers (2021-11-28T09:41:13Z) - Knowledge-driven Active Learning [70.37119719069499]
Active learning strategies aim at minimizing the amount of labelled data required to train a Deep Learning model.
Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary.
Here we propose to take into consideration common domain-knowledge and enable non-expert users to train a model with fewer samples.
arXiv Detail & Related papers (2021-10-15T06:11:53Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.