論文の概要: Unrolled Graph Learning for Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2210.17101v2
- Date: Fri, 31 Mar 2023 14:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 20:34:20.522673
- Title: Unrolled Graph Learning for Multi-Agent Collaboration
- Title(参考訳): マルチエージェント協調のためのグラフ学習
- Authors: Enpei Zhang, Shuo Tang, Xiaowen Dong, Siheng Chen, Yanfeng Wang
- Abstract要約: 人間のコラボレーションにインスパイアされた分散マルチエージェント学習モデルを提案する。
エージェントは、適切なコラボレータを自律的に検出し、より良いパフォーマンスを得るためにコラボレータのモデルを参照することができる。
- 参考スコア(独自算出の注目度): 37.239120967721156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent learning has gained increasing attention to tackle distributed
machine learning scenarios under constrictions of data exchanging. However,
existing multi-agent learning models usually consider data fusion under fixed
and compulsory collaborative relations among agents, which is not as flexible
and autonomous as human collaboration. To fill this gap, we propose a
distributed multi-agent learning model inspired by human collaboration, in
which the agents can autonomously detect suitable collaborators and refer to
collaborators' model for better performance. To implement such adaptive
collaboration, we use a collaboration graph to indicate the pairwise
collaborative relation. The collaboration graph can be obtained by graph
learning techniques based on model similarity between different agents. Since
model similarity can not be formulated by a fixed graphical optimization, we
design a graph learning network by unrolling, which can learn underlying
similar features among potential collaborators. By testing on both regression
and classification tasks, we validate that our proposed collaboration model can
figure out accurate collaborative relationship and greatly improve agents'
learning performance.
- Abstract(参考訳): マルチエージェント学習は、データ交換の制限の下で分散機械学習シナリオに取り組むために注目を集めている。
しかし、既存のマルチエージェント学習モデルは、通常、エージェント間の固定的かつ強制的な協調関係の下でのデータ融合を検討する。
このギャップを埋めるために,エージェントが適切なコラボレータを自律的に検出し,パフォーマンス向上のためにコラボレータのモデルを参照できる,ヒューマンコラボレーションにインスパイアされた分散マルチエージェント学習モデルを提案する。
このような適応的な協調を実現するために,協調グラフを用いて協調関係を示す。
協調グラフは、異なるエージェント間のモデル類似性に基づいたグラフ学習技術によって得られる。
モデルの類似性は固定されたグラフィカル最適化では定式化できないため、グラフ学習ネットワークを展開することで設計する。
回帰タスクと分類タスクの両方をテストすることで,提案する協調モデルが正確な協調関係を解明し,エージェントの学習性能を大幅に向上できることを確認した。
関連論文リスト
- Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Group-Aware Coordination Graph for Multi-Agent Reinforcement Learning [19.386588137176933]
GACG(Group-Aware Coordination Graph)は、エージェントペア間の協調を現在の観測結果に基づいて捉えるように設計されている。
GACGは、意思決定中にエージェント間の情報交換のためのグラフ畳み込みにも使われる。
本稿では,StarCraft IIマイクロマネジメントタスクによるGACGの性能評価を行った。
論文 参考訳(メタデータ) (2024-04-17T01:17:10Z) - MAPL: Model Agnostic Peer-to-peer Learning [2.9221371172659616]
我々は、異種パーソナライズされたモデルと協調グラフを同時に学習するために、MAPL(Model Agnostic Peer-to-peer Learning)を導入する。
MAPLは、(i)ローカルレベルのパーソナライズドモデルラーニング(PML)と、(ii)ネットワーク全体の分散協調グラフラーニング(CGL)という2つの主要なモジュールから構成され、局所的なタスク類似性に基づいて協調重みを動的に洗練する。
論文 参考訳(メタデータ) (2024-03-28T19:17:54Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Structured Cooperative Learning with Graphical Model Priors [98.53322192624594]
ローカルデータに制限のある分散デバイス上で、さまざまなタスクに対してパーソナライズされたモデルをトレーニングする方法を研究する。
本稿では,デバイス間の協調グラフをグラフィカルモデルにより生成する「構造化協調学習(SCooL)」を提案する。
SCooLを評価し,既存の分散学習手法と比較した。
論文 参考訳(メタデータ) (2023-06-16T02:41:31Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。