論文の概要: Scaling Large-Language-Model-based Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2406.07155v1
- Date: Tue, 11 Jun 2024 11:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 16:25:09.107337
- Title: Scaling Large-Language-Model-based Multi-Agent Collaboration
- Title(参考訳): 大規模言語モデルに基づくマルチエージェントコラボレーションのスケールアップ
- Authors: Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang, Zhiyuan Liu, Maosong Sun,
- Abstract要約: 大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
- 参考スコア(独自算出の注目度): 75.5241464256688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration, demonstrating that collective intelligence can surpass the capabilities of each individual. Inspired by the neural scaling law, which posits that increasing neurons leads to emergent abilities, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration. Technically, we propose multi-agent collaboration networks (MacNet), which utilize directed acyclic graphs to organize agents and streamline their interactive reasoning via topological ordering, with solutions derived from their dialogues. Extensive experiments show that MacNet consistently outperforms baseline models, enabling effective agent collaboration across various network topologies and supporting cooperation among more than a thousand agents. Notably, we observed a small-world collaboration phenomenon, where topologies resembling small-world properties achieved superior performance. Additionally, we identified a collaborative scaling law, indicating that normalized solution quality follows a logistic growth pattern as scaling agents, with collaborative emergence occurring much earlier than previously observed instances of neural emergence. The code and data will be available at https://github.com/OpenBMB/ChatDev.
- Abstract(参考訳): 大規模言語モデルによるエージェントのパイオニア化は、多エージェントコラボレーションの設計パターンを強調し、集団知能が個々の能力を上回ることを実証している。
ニューロンの増加が創発的能力をもたらすことを示唆する神経スケーリング法に触発された本研究では,マルチエージェント協調におけるエージェントの増加に同様の原理が適用されるかを検討する。
提案するマルチエージェント協調ネットワーク(MacNet)は,エージェントを整理し,対話的推論をトポロジカルな順序付けによって効率化する。
大規模な実験により、MacNetはベースラインモデルより一貫して優れており、様々なネットワークトポロジにまたがる効果的なエージェントコラボレーションを可能にし、1000以上のエージェント間の協力を支援している。
特に,小世界特性に類似したトポロジが優れた性能を発揮する,小世界協調現象が観察された。
さらに、我々は、正規化されたソリューションの品質がスケーリングエージェントとしてロジスティックな成長パターンに従うことを示し、これまで観察された神経発生の事例よりもはるかに早く、協調的な出現が生じることを示唆する協調スケーリング法則を特定した。
コードとデータはhttps://github.com/OpenBMB/ChatDevで入手できる。
関連論文リスト
- COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
本稿では,言語コミュニケーションによるマルチモーダルマルチエージェントシステムの協調性能を評価するための新しいベンチマークを提案する。
オープンソースモデルとクローズドソースモデルを用いてエージェントエージェントとエージェント-ヒューマンのコラボレーションをテストすることにより、最先端モデルにおける驚くほどの弱点が明らかとなった。
論文 参考訳(メタデータ) (2024-10-10T02:49:47Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalとコンセンサスに達するためのガイドである。
このような効率的なコンセンサス機構は、すべてのエージェントを協調して有用な将来状態に導くことができることを示す。
論文 参考訳(メタデータ) (2024-03-05T18:07:34Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - PooL: Pheromone-inspired Communication Framework forLarge Scale
Multi-Agent Reinforcement Learning [0.0]
textbfPooLは、大規模マルチエージェント強化の textbfl に適用される間接通信フレームワークである。
PooLはフェロモンの放出と利用機構を利用して、大規模なエージェント調整を制御する。
PooLは効果的な情報を取り込み、通信コストの低い他の最先端手法よりも高い報酬を得ることができる。
論文 参考訳(メタデータ) (2022-02-20T03:09:53Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。