Wavefunction matching for solving quantum many-body problems
- URL: http://arxiv.org/abs/2210.17488v4
- Date: Fri, 14 Jun 2024 14:45:28 GMT
- Title: Wavefunction matching for solving quantum many-body problems
- Authors: Serdar Elhatisari, Lukas Bovermann, Yuanzhuo Ma, Evgeny Epelbaum, Dillon Frame, Fabian Hildenbrand, Myungkuk Kim, Youngman Kim, Hermann Krebs, Timo A. Lähde, Dean Lee, Ning Li, Bing-Nan Lu, Ulf-G. Meißner, Gautam Rupak, Shihang Shen, Young-Ho Song, Gianluca Stellin,
- Abstract summary: Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems.
One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle.
Here we address the problem by introducing a new approach called wavefunction matching.
Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction.
- Score: 0.851455750673879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ab initio calculations play an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions to quantum chemistry and from atomic and molecular systems to nuclear physics. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing a new approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter, and nuclear matter. We use high-fidelity chiral effective field theory interactions and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations.
Related papers
- Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Deep-neural-network approach to solving the ab initio nuclear structure
problem [0.799536002595393]
We develop FeynmanNet, a deep-learning variational quantum Monte Carlo approach for emphab initio nuclear structure.
We show that FeynmanNet can provide very accurate solutions of ground-state energies and wave functions for $4$He, $6$Li, and even up to $16$O.
arXiv Detail & Related papers (2022-11-25T10:14:04Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Mapping quantum chemical dynamics problems onto spin-lattice simulators [0.5249805590164901]
We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
arXiv Detail & Related papers (2021-03-12T17:32:52Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Quantum coherence and speed limit in the mean-field Dicke model of
superradiance [0.0]
We discuss the quantifying of quantum coherence for the Dicke model of superradiance in the mean-field approximation.
We find the single-atom $l_1$-norm of coherence is given by the square root of the normalized average intensity of radiation emitted by the superradiant system.
arXiv Detail & Related papers (2020-07-06T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.