論文の概要: Improving Fairness in Image Classification via Sketching
- arxiv url: http://arxiv.org/abs/2211.00168v1
- Date: Mon, 31 Oct 2022 22:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 13:24:48.055045
- Title: Improving Fairness in Image Classification via Sketching
- Title(参考訳): スケッチによる画像分類の公平性向上
- Authors: Ruichen Yao, Ziteng Cui, Xiaoxiao Li, Lin Gu
- Abstract要約: ディープニューラルネットワーク(DNN)は、異なるサブ人口からトレーニングデータが収集された場合、不公平な予測を行う傾向がある。
我々はこの現象に対処するためにスケッチを使うことを提案する。
本手法は,一般的なシーンデータセットと医療シーンデータセットの両方に関する広範な実験を通じて評価する。
- 参考スコア(独自算出の注目度): 14.154930352612926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness is a fundamental requirement for trustworthy and human-centered
Artificial Intelligence (AI) system. However, deep neural networks (DNNs) tend
to make unfair predictions when the training data are collected from different
sub-populations with different attributes (i.e. color, sex, age), leading to
biased DNN predictions. We notice that such a troubling phenomenon is often
caused by data itself, which means that bias information is encoded to the DNN
along with the useful information (i.e. class information, semantic
information). Therefore, we propose to use sketching to handle this phenomenon.
Without losing the utility of data, we explore the image-to-sketching methods
that can maintain useful semantic information for the target classification
while filtering out the useless bias information. In addition, we design a fair
loss to further improve the model fairness. We evaluate our method through
extensive experiments on both general scene dataset and medical scene dataset.
Our results show that the desired image-to-sketching method improves model
fairness and achieves satisfactory results among state-of-the-art.
- Abstract(参考訳): 公正は、信頼できる人間中心人工知能(AI)システムの基本要件である。
しかし、ディープニューラルネットワーク(DNN)は、異なる属性(色、性別、年齢など)の異なるサブ集団からトレーニングデータが収集されると不公平な予測を行う傾向にあり、バイアスのあるDNN予測につながる。
このような厄介な現象はデータ自体によって引き起こされることが多く、つまりバイアス情報は有用な情報(クラス情報、セマンティック情報)とともにDNNに符号化される。
そこで我々は,この現象をスケッチとして扱うことを提案する。
データの有用性を失うことなく、ターゲット分類に有用な意味情報を維持しつつ、無駄なバイアス情報をフィルタリングするイメージ・ツー・スケッチ手法を探索する。
さらに、モデルフェア性をさらに改善するために、公正な損失をデザインします。
本手法は,一般的なシーンデータセットと医療シーンデータセットの両方に関する広範な実験を通じて評価する。
その結果, 所望の画像からスケッチまでの手法は, モデルフェアネスを向上し, 最新技術の中で満足できる結果が得られることがわかった。
関連論文リスト
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
実データ分布をより忠実に表現する分類データセットを合成するためのフレームワークを提案する。
DataDream fine-tunes LoRA weights for the image generation model on the few real image before generated the training data using the adapt model。
次に、合成データを用いてCLIPのLoRA重みを微調整し、様々なデータセットに対する以前のアプローチよりも下流画像の分類を改善する。
論文 参考訳(メタデータ) (2024-07-15T17:10:31Z) - Mitigating Bias Using Model-Agnostic Data Attribution [2.9868610316099335]
機械学習モデルにおけるバイアスの緩和は、公平性と公平性を保証するための重要な取り組みである。
本稿では, 画素画像の属性を利用して, バイアス属性を含む画像の領域を特定し, 正規化することで, バイアスに対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-08T13:00:56Z) - Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
本稿では,コンピュータビジョンモデルにおけるバイアスを軽減するための新しい手法を提案する。
提案手法は,カリキュラム学習フレームワークと詳細な逆数損失を組み合わせることで,逆数例を用いてモデルを微調整する。
我々は,定性評価と定量的評価を併用し,従来の方法と比較してバイアス緩和と精度の向上を実証した。
論文 参考訳(メタデータ) (2024-04-18T00:41:32Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
公平性は、特に顔領域において、ディープラーニングの識別モデルを訓練する際に重要である。
モデルは、特定の特性(年齢や肌の色など)と無関係な属性(下流タスク)を関連付ける傾向がある
本稿では,これらの相関を緩和し,公平性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T19:51:10Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
顔認識システムは、法執行を含む安全クリティカルなアプリケーションに広くデプロイされている。
彼らは、性別や人種など、様々な社会的デデノグラフィー次元に偏見を示す。
バイアス軽減に関するこれまでの研究は、主にトレーニングデータの事前処理に重点を置いていた。
論文 参考訳(メタデータ) (2022-10-18T15:46:05Z) - DASH: Visual Analytics for Debiasing Image Classification via
User-Driven Synthetic Data Augmentation [27.780618650580923]
画像分類モデルは、訓練データにおいて、入力特徴と出力クラスとの間の無関係な共起に基づいてクラスを予測することをしばしば学習する。
我々は、望ましくない相関を「データバイアス」と呼び、データバイアスを引き起こす視覚的特徴を「バイアス要因」と呼んでいる。
人間の介入なしにバイアスを自動的に識別し緩和することは困難である。
論文 参考訳(メタデータ) (2022-09-14T00:44:41Z) - Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To
Reduce Model Bias [10.639605996067534]
コンテキスト情報は、より優れた表現を学び、精度を向上させるために、ディープニューラルネットワーク(DNN)にとって貴重なキューである。
COCOでは、多くの対象カテゴリーは、男性よりも男性の方がはるかに高い共起性を持ち、男性に有利なDNNの予測を偏見を与える可能性がある。
本研究では, 変動係数を用いたデータ修復アルゴリズムを導入し, 保護されたクラスに対して, 公平かつ文脈的にバランスの取れたデータをキュレートする。
論文 参考訳(メタデータ) (2021-10-20T06:00:03Z) - Visual Recognition with Deep Learning from Biased Image Datasets [6.10183951877597]
視覚認知の文脈において、バイアスモデルがどのように治療問題に適用できるかを示す。
作業中のバイアス機構に関する(近似的な)知識に基づいて、我々のアプローチは観察を再重み付けする。
本稿では,画像データベース間で共有される低次元画像表現を提案する。
論文 参考訳(メタデータ) (2021-09-06T10:56:58Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。