論文の概要: Angular upsampling in diffusion MRI using contextual HemiHex
sub-sampling in q-space
- arxiv url: http://arxiv.org/abs/2211.00240v1
- Date: Tue, 1 Nov 2022 03:13:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 13:43:00.887088
- Title: Angular upsampling in diffusion MRI using contextual HemiHex
sub-sampling in q-space
- Title(参考訳): 文脈的ヘミヘックスサブサンプリングを用いた拡散mriにおける角アップサンプリング
- Authors: Abrar Faiyaz, Md Nasir Uddin, Giovanni Schifitto
- Abstract要約: データを関連するコンテキストに組み込むことで、AIモデルが後部を推測するための最大事前情報が提供されることを保証することが重要である。
本稿では,q空間幾何のトレーニングデータサンプリングに好意的に取り組むため,HemiHexサブサンプリングを提案する。
提案手法は, 未知の q-空間を推定し, 先行研究の限界に対処する幾何的に最適化された回帰手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Artificial Intelligence (Deep Learning(DL)/ Machine Learning(ML)) techniques
are widely being used to address and overcome all kinds of ill-posed problems
in medical imaging which was or in fact is seemingly impossible. Reducing
gradient directions but harnessing high angular resolution(HAR) diffusion data
in MR that retains clinical features is an important and challenging problem in
the field. While the DL/ML approaches are promising, it is important to
incorporate relevant context for the data to ensure that maximum prior
information is provided for the AI model to infer the posterior. In this paper,
we introduce HemiHex (HH) subsampling to suggestively address training data
sampling on q-space geometry, followed by a nearest neighbor regression
training on the HH-samples to finally upsample the dMRI data. Earlier studies
has tried to use regression for up-sampling dMRI data but yields performance
issues as it fails to provide structured geometrical measures for inference.
Our proposed approach is a geometrically optimized regression technique which
infers the unknown q-space thus addressing the limitations in the earlier
studies.
- Abstract(参考訳): 人工知能(Deep Learning(DL)/機械学習(ML))技術は、医療画像におけるあらゆる不適切な問題に対処し、克服するために広く使われている。
臨床像を保持するMRにおける勾配方向の低減と高角分解能(HAR)拡散データの利用は,この分野において重要な課題である。
DL/MLアプローチは有望だが、データに関連するコンテキストを組み込んで、AIモデルが後部を推測するための最大事前情報を提供することが重要である。
本稿では,半ヘックス(hh)サブサンプリングを導入し,q空間幾何におけるトレーニングデータサンプリングを提案的に取り扱うとともに,最寄りのhh-samplesにおける最寄りの回帰トレーニングを行い,最終的にdmriデータをサンプリングする。
以前の研究では、dmriデータのサンプルアップに回帰を用いるが、推論の構造化幾何学的尺度の提供に失敗したため、パフォーマンス上の問題が発生する。
提案手法は, 未知の q-空間を推定し, 先行研究の限界に対処する幾何的に最適化された回帰手法である。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
磁気共鳴画像(MRI)データの再構成は、ディープラーニングによって肯定的な影響を受けている。
重要な課題は、トレーニングとテストデータ間の分散シフトへの一般化を改善することだ。
論文 参考訳(メタデータ) (2024-02-12T12:50:10Z) - Anchor Data Augmentation [53.39044919864444]
非線形過パラメータ回帰におけるデータ拡張のための新しいアルゴリズムを提案する。
我々のデータ拡張アルゴリズムは、因果関係に関する文献から借用し、最近提案されたデータ拡張のためのアンカー回帰(AR)法を拡張した。
論文 参考訳(メタデータ) (2023-11-12T21:08:43Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
定量的磁気共鳴イメージング(qMRI)は、生体物理パラメータの再現可能な測定を可能にする。
この課題は、取得した生データから所望の組織パラメーターマップを得るために、非線形で不適切な逆問題を解決することである。
我々は、信号、取得モデルに関する知識を統合した新しいqMRI再構成手法であるPINQIを提案し、単一エンドツーエンドのトレーニング可能なニューラルネットワークへの正規化を学習した。
論文 参考訳(メタデータ) (2023-06-19T15:37:53Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
臨床MRIデータに対するCSGMフレームワークの初成功例を示す。
我々は、高速MRIデータセットから脳スキャンに先立って生成をトレーニングし、Langevin dynamicsによる後部サンプリングが高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2021-08-03T08:52:06Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
ファイバトラクトグラフィーのための統一的な推定フレームワークを提案する。
提案手法は,信号推定の精度とそれに続く解析精度を大幅に向上させる。
本稿では,Human Connectome Projectデータに基づく包括的比較分析を提案する。
論文 参考訳(メタデータ) (2020-09-07T10:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。