DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification
- URL: http://arxiv.org/abs/2308.00475v1
- Date: Tue, 1 Aug 2023 11:58:49 GMT
- Title: DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification
- Authors: Mohammadreza Shakouri, Fatemeh Iranmanesh, Mahdi Eftekhari
- Abstract summary: We propose a self-supervised method, DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based on a vision transformer for chest X-ray classification.
A comparative analysis is performed to show the effectiveness of the proposed method for both pneumonia and COVID-19 detection.
- Score: 0.9883261192383611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The limited availability of labeled chest X-ray datasets is a significant
bottleneck in the development of medical imaging methods. Self-supervised
learning (SSL) can mitigate this problem by training models on unlabeled data.
Furthermore, self-supervised pretraining has yielded promising results in
visual recognition of natural images but has not been given much consideration
in medical image analysis. In this work, we propose a self-supervised method,
DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based
on a vision transformer for chest X-ray classification. A comparative analysis
is performed to show the effectiveness of the proposed method for both
pneumonia and COVID-19 detection. Through a quantitative analysis, it is also
shown that the proposed method outperforms state-of-the-art methods in terms of
accuracy and achieves comparable results in terms of AUC and F-1 score while
requiring significantly less labeled data.
Related papers
- MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICX is an approach to capture rich representations in the form of embeddings from chest X-ray images.
We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning.
arXiv Detail & Related papers (2024-03-18T06:19:37Z) - Transfer learning method in the problem of binary classification of
chest X-rays [0.0]
High-precision and rapid detection of pathologies on chest X-rays makes it possible to detect the development of pneumonia at an early stage and begin immediate treatment.
Artificial intelligence can speed up and qualitatively improve the procedure of X-ray analysis and give recommendations to the doctor for additional consideration of suspicious images.
arXiv Detail & Related papers (2023-03-19T08:35:47Z) - COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
We propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images.
We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection.
arXiv Detail & Related papers (2022-12-19T07:10:51Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
arXiv Detail & Related papers (2022-05-27T20:06:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Pinball-OCSVM for early-stage COVID-19 diagnosis with limited
posteroanterior chest X-ray images [3.4935179780034247]
This research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM) that can work in presence of limited COVID-19 positive CXR samples.
The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods.
arXiv Detail & Related papers (2020-10-16T02:34:15Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.