Augmentation Invariant Manifold Learning
- URL: http://arxiv.org/abs/2211.00460v3
- Date: Tue, 14 Jan 2025 21:26:20 GMT
- Title: Augmentation Invariant Manifold Learning
- Authors: Shulei Wang,
- Abstract summary: We introduce a new representation learning method called augmentation invariant manifold learning.
Compared with existing self-supervised methods, the new method simultaneously exploits the manifold's geometric structure and invariant property of augmented data.
Our theoretical investigation characterizes the role of data augmentation in the proposed method and reveals why and how the data representation learned from augmented data can improve the $k$-nearest neighbor in the downstream analysis.
- Score: 0.5827521884806071
- License:
- Abstract: Data augmentation is a widely used technique and an essential ingredient in the recent advance in self-supervised representation learning. By preserving the similarity between augmented data, the resulting data representation can improve various downstream analyses and achieve state-of-the-art performance in many applications. Despite the empirical effectiveness, most existing methods lack theoretical understanding under a general nonlinear setting. To fill this gap, we develop a statistical framework on a low-dimension product manifold to model the data augmentation transformation. Under this framework, we introduce a new representation learning method called augmentation invariant manifold learning and design a computationally efficient algorithm by reformulating it as a stochastic optimization problem. Compared with existing self-supervised methods, the new method simultaneously exploits the manifold's geometric structure and invariant property of augmented data and has an explicit theoretical guarantee. Our theoretical investigation characterizes the role of data augmentation in the proposed method and reveals why and how the data representation learned from augmented data can improve the $k$-nearest neighbor classifier in the downstream analysis, showing that a more complex data augmentation leads to more improvement in downstream analysis. Finally, numerical experiments on simulated and real data sets are presented to demonstrate the merit of the proposed method.
Related papers
- Graph Neural Network-Driven Hierarchical Mining for Complex Imbalanced Data [0.8246494848934447]
This study presents a hierarchical mining framework for high-dimensional imbalanced data.
By constructing a structured graph representation of the dataset and integrating graph neural network embeddings, the proposed method effectively captures global interdependencies among samples.
Empirical evaluations across multiple experimental scenarios validate the efficacy of the proposed approach.
arXiv Detail & Related papers (2025-02-06T06:26:41Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - On Counterfactual Data Augmentation Under Confounding [30.76982059341284]
Counterfactual data augmentation has emerged as a method to mitigate confounding biases in the training data.
These biases arise due to various observed and unobserved confounding variables in the data generation process.
We show how our simple augmentation method helps existing state-of-the-art methods achieve good results.
arXiv Detail & Related papers (2023-05-29T16:20:23Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.