DOLPH: Diffusion Models for Phase Retrieval
- URL: http://arxiv.org/abs/2211.00529v2
- Date: Wed, 2 Nov 2022 03:25:20 GMT
- Title: DOLPH: Diffusion Models for Phase Retrieval
- Authors: Shirin Shoushtari, Jiaming Liu, Ulugbek S. Kamilov
- Abstract summary: Phase retrieval refers to the problem of recovering an image from the magnitudes of its complex-valued linear measurements.
Since the problem is ill-posed, recovery requires prior knowledge on unknown image.
We present as a new deep model-based for phase retrieval that reconstructs an image prior to a diffusion step.
- Score: 19.22990916056669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase retrieval refers to the problem of recovering an image from the
magnitudes of its complex-valued linear measurements. Since the problem is
ill-posed, the recovery requires prior knowledge on the unknown image. We
present DOLPH as a new deep model-based architecture for phase retrieval that
integrates an image prior specified using a diffusion model with a nonconvex
data-fidelity term for phase retrieval. Diffusion models are a recent class of
deep generative models that are relatively easy to train due to their
implementation as image denoisers. DOLPH reconstructs high-quality solutions by
alternating data-consistency updates with the sampling step of a diffusion
model. Our numerical results show the robustness of DOLPH to noise and its
ability to generate several candidate solutions given a set of measurements.
Related papers
- An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations [21.411327264448058]
We propose an expectation-maximization (EM) approach to train diffusion models from corrupted observations.
Our method alternates between reconstructing clean images from corrupted data using a known diffusion model (E-step) and refining diffusion model weights based on these reconstructions (M-step)
This iterative process leads the learned diffusion model to gradually converge to the true clean data distribution.
arXiv Detail & Related papers (2024-07-01T07:00:17Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Sampling (A-DPS) is a generative model pre-trained on one type of corruption.
We show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
We extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements.
arXiv Detail & Related papers (2024-03-13T17:28:20Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine.
We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior.
arXiv Detail & Related papers (2022-11-22T15:30:38Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
We introduce a way to sample data from a conditional distribution given the measurements, such that the model can be readily used for solving inverse problems in imaging.
Our model requires magnitude images only for training, and yet is able to reconstruct complex-valued data, and even extends to parallel imaging.
arXiv Detail & Related papers (2021-10-08T08:42:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.