On the Semi-supervised Expectation Maximization
- URL: http://arxiv.org/abs/2211.00537v1
- Date: Tue, 1 Nov 2022 15:42:57 GMT
- Title: On the Semi-supervised Expectation Maximization
- Authors: Erixhen Sula and Lizhong Zheng
- Abstract summary: We focus on a semi-supervised case to learn the model from labeled and unlabeled samples.
The analysis clearly demonstrates how the labeled samples improve the convergence rate for the exponential family mixture model.
- Score: 5.481082183778667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Expectation Maximization (EM) algorithm is widely used as an iterative
modification to maximum likelihood estimation when the data is incomplete. We
focus on a semi-supervised case to learn the model from labeled and unlabeled
samples. Existing work in the semi-supervised case has focused mainly on
performance rather than convergence guarantee, however we focus on the
contribution of the labeled samples to the convergence rate. The analysis
clearly demonstrates how the labeled samples improve the convergence rate for
the exponential family mixture model. In this case, we assume that the
population EM (EM with unlimited data) is initialized within the neighborhood
of global convergence for the population EM that consists solely of samples
that have not been labeled. The analysis for the labeled samples provides a
comprehensive description of the convergence rate for the Gaussian mixture
model. In addition, we extend the findings for labeled samples and offer an
alternative proof for the population EM's convergence rate with unlabeled
samples for the symmetric mixture of two Gaussians.
Related papers
- Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
We consider the problem of sampling a multimodal distribution with a Markov chain given a small number of samples from the stationary measure.
We show that if the Markov chain has a $k$th order spectral gap, samples from the stationary distribution will efficiently generate a sample whose conditional law is $varepsilon$-close in TV distance to the stationary measure.
arXiv Detail & Related papers (2024-11-14T01:37:02Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - On semi-supervised estimation using exponential tilt mixture models [12.347498345854715]
Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only predictors.
For semi-supervised estimation, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models.
arXiv Detail & Related papers (2023-11-14T19:53:26Z) - Out-Of-Domain Unlabeled Data Improves Generalization [0.7589678255312519]
We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems.
We show that unlabeled samples can be harnessed to narrow the generalization gap.
We validate our claims through experiments conducted on a variety of synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-29T02:00:03Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.