Uncertainty Quantification for Data-Driven Machine Learning Models in Nuclear Engineering Applications: Where We Are and What Do We Need?
- URL: http://arxiv.org/abs/2503.17385v1
- Date: Sun, 16 Mar 2025 19:54:55 GMT
- Title: Uncertainty Quantification for Data-Driven Machine Learning Models in Nuclear Engineering Applications: Where We Are and What Do We Need?
- Authors: Xu Wu, Lesego E. Moloko, Pavel M. Bokov, Gregory K. Delipei, Joshua Kaizer, Kostadin N. Ivanov,
- Abstract summary: Machine learning (ML) has been leveraged to tackle a diverse range of tasks in almost all branches of nuclear engineering.<n>An important but under-rated area is uncertainty quantification (UQ) of ML.<n>We will elucidate the differences in the basic concepts of UQ of physics-based models and data-driven ML models.
- Score: 2.026805178426999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has been leveraged to tackle a diverse range of tasks in almost all branches of nuclear engineering. Many of the successes in ML applications can be attributed to the recent performance breakthroughs in deep learning, the growing availability of computational power, data, and easy-to-use ML libraries. However, these empirical successes have often outpaced our formal understanding of the ML algorithms. An important but under-rated area is uncertainty quantification (UQ) of ML. ML-based models are subject to approximation uncertainty when they are used to make predictions, due to sources including but not limited to, data noise, data coverage, extrapolation, imperfect model architecture and the stochastic training process. The goal of this paper is to clearly explain and illustrate the importance of UQ of ML. We will elucidate the differences in the basic concepts of UQ of physics-based models and data-driven ML models. Various sources of uncertainties in physical modeling and data-driven modeling will be discussed, demonstrated, and compared. We will also present and demonstrate a few techniques to quantify the ML prediction uncertainties. Finally, we will discuss the need for building a verification, validation and UQ framework to establish ML credibility.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Uncertainty Quantification in Machine Learning for Engineering Design
and Health Prognostics: A Tutorial [12.570694576213244]
Uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making.
This tutorial provides a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks.
We discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics.
arXiv Detail & Related papers (2023-05-07T03:12:03Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - Logic-Based Explainability in Machine Learning [0.0]
The operation of the most successful Machine Learning models is incomprehensible for human decision makers.
In recent years, there have been efforts on devising approaches for explaining ML models.
This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models.
arXiv Detail & Related papers (2022-10-24T13:43:07Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Quantification of Deep Neural Network Prediction Uncertainties for VVUQ
of Machine Learning Models [1.929039244357139]
This work aims at quantifying the prediction, or approximation uncertainties of Deep Neural Networks (DNNs) when they are used as surrogate models for expensive physical models.
Three techniques for UQ of DNNs are compared, namely Monte Carlo Dropout (MCD), Deep Ensembles (DE) and Bayesian Neural Networks (BNNs)
arXiv Detail & Related papers (2022-06-27T20:49:57Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
We present a method consisting of eight design questions that outline the deliberation and normative choices going into creating a machine learning model.
Our method affords several benefits, such as supporting critical assessment through methodological transparency.
We believe that our method can help ML practitioners structure and justify their choices and assumptions when developing ML models.
arXiv Detail & Related papers (2021-05-03T08:47:45Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Insights into Performance Fitness and Error Metrics for Machine Learning [1.827510863075184]
Machine learning (ML) is the field of training machines to achieve high level of cognition and perform human-like analysis.
This paper examines a number of the most commonly-used performance fitness and error metrics for regression and classification algorithms.
arXiv Detail & Related papers (2020-05-17T22:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.