論文の概要: Semantic Pivoting Model for Effective Event Detection
- arxiv url: http://arxiv.org/abs/2211.00709v1
- Date: Tue, 1 Nov 2022 19:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 13:11:10.841322
- Title: Semantic Pivoting Model for Effective Event Detection
- Title(参考訳): 効果的事象検出のための意味的ピボットモデル
- Authors: Anran Hao, Siu Cheung Hui, Jian Su
- Abstract要約: Event Detectionは、構造化されていない記事からイベントインスタンスの参照を識別し、分類することを目的としている。
イベント検出の既存のテクニックは、イベントタイプクラスを表現するために、均質な1ホットベクトルのみを使用しており、型の意味がタスクにとって重要であるという事実を無視している。
本稿では,学習中の事前情報を明示的に組み込んで,入力とイベント間の意味的に意味のある相関関係を捉えるセマンティック・ピロリング・モデル(SPEED)を提案する。
- 参考スコア(独自算出の注目度): 19.205550116466604
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Event Detection, which aims to identify and classify mentions of event
instances from unstructured articles, is an important task in Natural Language
Processing (NLP). Existing techniques for event detection only use homogeneous
one-hot vectors to represent the event type classes, ignoring the fact that the
semantic meaning of the types is important to the task. Such an approach is
inefficient and prone to overfitting. In this paper, we propose a Semantic
Pivoting Model for Effective Event Detection (SPEED), which explicitly
incorporates prior information during training and captures semantically
meaningful correlations between input and events. Experimental results show
that our proposed model achieves state-of-the-art performance and outperforms
the baselines in multiple settings without using any external resources.
- Abstract(参考訳): イベント検出は、構造化されていない記事からイベントインスタンスの言及を識別し分類することを目的としており、自然言語処理(NLP)において重要なタスクである。
イベント検出の既存のテクニックは、イベントタイプクラスを表すために均質な1つのホットベクターのみを使用し、型の意味的意味がタスクにとって重要であるという事実を無視している。
このようなアプローチは非効率であり、過度に適合しがちである。
本稿では,学習中の事前情報を明示的に取り込み,入力とイベント間の意味的に有意味な相関関係を捉えた,効果的なイベント検出(速度)のための意味的ピボットモデルを提案する。
実験の結果,提案モデルが最先端性能を達成し,外部リソースを使わずに複数の設定でベースラインを上回ることがわかった。
関連論文リスト
- Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
ゼロショットイベント検出に対する既存のアプローチは通常、既知のイベントタイプをアノテートしたデータセット上でモデルをトレーニングする。
イベント定義に従うためのトレーニングモデルによるゼロショットイベント検出の改善を目指しています。
論文 参考訳(メタデータ) (2024-03-05T01:46:50Z) - Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning [45.3385722995475]
ゼロおよび少数ショットイベント検出のためのメタ学習ベースのフレームワークであるMetaEventを提案する。
本フレームワークでは,クローゼをベースとしたプロンプトとトリガ対応ソフトを用いて,未知のイベントタイプに効率的に出力を投影する手法を提案する。
そのため、提案されたMetaEventは、事前の知識なしに、機能とイベントタイプをマッピングすることで、ゼロショットイベント検出を実行することができる。
論文 参考訳(メタデータ) (2023-05-27T05:36:46Z) - Unifying Event Detection and Captioning as Sequence Generation via
Pre-Training [53.613265415703815]
本稿では,イベント検出とキャプションのタスク間関連性を高めるための,事前学習と微調整の統合フレームワークを提案する。
我々のモデルは最先端の手法よりも優れており、大規模ビデオテキストデータによる事前学習ではさらに向上できる。
論文 参考訳(メタデータ) (2022-07-18T14:18:13Z) - PILED: An Identify-and-Localize Framework for Few-Shot Event Detection [79.66042333016478]
本研究では,事前学習した言語モデルから事象関連知識を引き出すために,クローゼプロンプトを用いた。
型固有のパラメータの数を最小化し、新しい型に対するイベント検出タスクに迅速に適応できるようにします。
論文 参考訳(メタデータ) (2022-02-15T18:01:39Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
本稿では,サブイベント検出とEventSeg予測の依存関係をキャプチャする制約を学習し,強制するアプローチを提案する。
我々は制約学習にRectifier Networksを採用し、学習した制約をニューラルネットワークの損失関数の正規化項に変換する。
論文 参考訳(メタデータ) (2021-09-13T20:50:37Z) - Unsupervised Label-aware Event Trigger and Argument Classification [73.86358632937372]
まず,利用可能なツール(srlなど)でイベントを識別し,それを事前に定義されたイベントタイプに自動マップする,教師なしイベント抽出パイプラインを提案する。
事前訓練された言語モデルを利用して、イベントトリガと引数の両方の事前定義された型を文脈的に表現します。
我々は、トリガーの83%と引数の54%を正しい型にマッピングし、以前のゼロショットアプローチのパフォーマンスをほぼ倍にしました。
論文 参考訳(メタデータ) (2020-12-30T17:47:24Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
本稿では,構造化予測アルゴリズムであるDeep Value Networks (DVN) を利用したエンドツーエンドモデルを提案する。
提案手法はACE05上でのCRFモデルに匹敵する性能を達成し,計算効率は極めて高い。
論文 参考訳(メタデータ) (2020-10-24T05:28:16Z) - Probing and Fine-tuning Reading Comprehension Models for Few-shot Event
Extraction [17.548548562222766]
イベント抽出のための読解フレームワークを提案する。
適切なクエリテンプレートを構築することで,タスクやラベルのセマンティクスに関する豊富な知識を効果的に抽出することができる。
本手法は,ACE 2005ベンチマークにおいて,全監督訓練を行った場合の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-10-21T21:48:39Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
本稿では,OED(Ongoing Event Detection)タスクを紹介する。
目的は、歴史、未来、仮説、あるいは新しいものでも現在のものでもない他の形式や出来事に対してのみ、進行中のイベントの言及を検出することである。
構造化されていないテキストから進行中のイベントに関する構造化情報を抽出する必要があるアプリケーションは、OEDシステムを利用することができる。
論文 参考訳(メタデータ) (2020-07-02T20:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。