An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction
- URL: http://arxiv.org/abs/2211.00817v1
- Date: Wed, 2 Nov 2022 01:39:30 GMT
- Title: An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction
- Authors: Gang Qiao, Kaidong Hu, Seonghyeon Moon, Samuel S. Sohn, Sejong Yoon,
Mubbasir Kapadia, Vladimir Pavlovic
- Abstract summary: We propose a novel scoring method, which characterizes generalization of models trained on source crowd scenarios and applied to target crowd scenarios.
The Interaction component aims to characterize the difficulty of scenario domains, while the diversity of a scenario domain is captured in the Diversity score.
Our experimental results validate the efficacy of the proposed method on several simulated and real-world (source,target) generalization tasks.
- Score: 27.10815774845461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based approaches to modeling crowd motion have become increasingly
successful but require training and evaluation on large datasets, coupled with
complex model selection and parameter tuning. To circumvent this tremendously
time-consuming process, we propose a novel scoring method, which characterizes
generalization of models trained on source crowd scenarios and applied to
target crowd scenarios using a training-free, model-agnostic Interaction +
Diversity Quantification score, ISDQ. The Interaction component aims to
characterize the difficulty of scenario domains, while the diversity of a
scenario domain is captured in the Diversity score. Both scores can be computed
in a computation tractable manner. Our experimental results validate the
efficacy of the proposed method on several simulated and real-world
(source,target) generalization tasks, demonstrating its potential to select
optimal domain pairs before training and testing a model.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
We focus on scenarios where data distributions vary across multiple segments of the entire population.
We propose a two-stage multiply robust estimation method to improve model performance on each individual segment.
Our method is designed to be implemented with commonly used off-the-shelf machine learning models.
arXiv Detail & Related papers (2024-02-21T22:01:10Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
Summarization quality evaluation is a non-trivial task in text summarization.
We propose Unified Multi-scenario Summarization Evaluation Model (UMSE)
Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios.
arXiv Detail & Related papers (2023-05-26T12:54:44Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
Large-scale data analysis is growing at an exponential rate as data proliferates in our societies.
Deep Learning models require plenty of resources, and distributed training is needed.
This paper presents a Multicriteria approach for distributed learning.
arXiv Detail & Related papers (2021-11-27T07:10:25Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Reinforced Data Sampling for Model Diversification [15.547681142342846]
This paper proposes a new Reinforced Data Sampling (RDS) method to learn how to sample data adequately.
We formulate the optimisation problem of model diversification $delta-div$ in data sampling to maximise learning potentials and optimum allocation by injecting model diversity.
Our results suggest that the trainable sampling for model diversification is useful for competition organisers, researchers, or even starters to pursue full potentials of various machine learning tasks.
arXiv Detail & Related papers (2020-06-12T11:46:13Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.