Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach
- URL: http://arxiv.org/abs/2111.13834v1
- Date: Sat, 27 Nov 2021 07:10:25 GMT
- Title: Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach
- Authors: Marco Repetto, Davide La Torre, Muhammad Tariq
- Abstract summary: Large-scale data analysis is growing at an exponential rate as data proliferates in our societies.
Deep Learning models require plenty of resources, and distributed training is needed.
This paper presents a Multicriteria approach for distributed learning.
- Score: 2.7393821783237184
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large-scale data analysis is growing at an exponential rate as data
proliferates in our societies. This abundance of data has the advantage of
allowing the decision-maker to implement complex models in scenarios that were
prohibitive before. At the same time, such an amount of data requires a
distributed thinking approach. In fact, Deep Learning models require plenty of
resources, and distributed training is needed. This paper presents a
Multicriteria approach for distributed learning. Our approach uses the Weighted
Goal Programming approach in its Chebyshev formulation to build an ensemble of
decision rules that optimize aprioristically defined performance metrics. Such
a formulation is beneficial because it is both model and metric agnostic and
provides an interpretable output for the decision-maker. We test our approach
by showing a practical application in electricity demand forecasting. Our
results suggest that when we allow for dataset split overlapping, the
performances of our methodology are consistently above the baseline model
trained on the whole dataset.
Related papers
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
We focus on scenarios where data distributions vary across multiple segments of the entire population.
We propose a two-stage multiply robust estimation method to improve model performance on each individual segment.
Our method is designed to be implemented with commonly used off-the-shelf machine learning models.
arXiv Detail & Related papers (2024-02-21T22:01:10Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Estimating Task Completion Times for Network Rollouts using Statistical
Models within Partitioning-based Regression Methods [0.01841601464419306]
This paper proposes a data and Machine Learning-based forecasting solution for the Telecommunications network-rollout planning problem.
Using historical data of milestone completion times, a model needs to incorporate domain knowledge, handle noise and yet be interpretable to project managers.
This paper proposes partition-based regression models that incorporate data-driven statistical models within each partition, as a solution to the problem.
arXiv Detail & Related papers (2022-11-20T04:28:12Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
We show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods.
We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.
arXiv Detail & Related papers (2022-03-17T20:47:42Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Optimal Ensemble Construction for Multi-Study Prediction with
Applications to COVID-19 Excess Mortality Estimation [7.02598981483736]
Multi-study ensembling uses a two-stage strategy which fits study-specific models and estimates ensemble weights separately.
This approach ignores the ensemble properties at the model-fitting stage, potentially resulting in a loss of efficiency.
We show that when little data is available for a country before the onset of the pandemic, leveraging data from other countries can substantially improve prediction accuracy.
arXiv Detail & Related papers (2021-09-19T16:52:41Z) - Continual Learning using a Bayesian Nonparametric Dictionary of Weight
Factors [75.58555462743585]
Naively trained neural networks tend to experience catastrophic forgetting in sequential task settings.
We propose a principled nonparametric approach based on the Indian Buffet Process (IBP) prior, letting the data determine how much to expand the model complexity.
We demonstrate the effectiveness of our method on a number of continual learning benchmarks and analyze how weight factors are allocated and reused throughout the training.
arXiv Detail & Related papers (2020-04-21T15:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.