Interpretable estimation of the risk of heart failure hospitalization
from a 30-second electrocardiogram
- URL: http://arxiv.org/abs/2211.00819v2
- Date: Fri, 4 Nov 2022 06:28:05 GMT
- Title: Interpretable estimation of the risk of heart failure hospitalization
from a 30-second electrocardiogram
- Authors: Sergio Gonz\'alez, Wan-Ting Hsieh, Davide Burba, Trista Pei-Chun Chen,
Chun-Li Wang, Victor Chien-Chia Wu, Shang-Hung Chang
- Abstract summary: This study shows it is possible to estimate hospitalization for congestive heart failure by a 30 seconds single-lead electrocardiogram signal.
Using a machine learning approach not only results in greater predictive power but also provides clinically meaningful interpretations.
- Score: 2.167398752829277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival modeling in healthcare relies on explainable statistical models;
yet, their underlying assumptions are often simplistic and, thus, unrealistic.
Machine learning models can estimate more complex relationships and lead to
more accurate predictions, but are non-interpretable. This study shows it is
possible to estimate hospitalization for congestive heart failure by a 30
seconds single-lead electrocardiogram signal. Using a machine learning approach
not only results in greater predictive power but also provides clinically
meaningful interpretations. We train an eXtreme Gradient Boosting accelerated
failure time model and exploit SHapley Additive exPlanations values to explain
the effect of each feature on predictions. Our model achieved a concordance
index of 0.828 and an area under the curve of 0.853 at one year and 0.858 at
two years on a held-out test set of 6,573 patients. These results show that a
rapid test based on an electrocardiogram could be crucial in targeting and
treating high-risk individuals.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Improving Cardiovascular Disease Prediction Through Comparative Analysis
of Machine Learning Models: A Case Study on Myocardial Infarction [0.0]
Cardiovascular disease remains a leading cause of mortality in the contemporary world.
Accurate predictions are pivotal for refining healthcare strategies.
XGBoost emerges as the top-performing model.
arXiv Detail & Related papers (2023-11-01T13:41:44Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE [7.021489981474361]
Medicalized hotels were established in Taiwan as quarantine facilities for COVID-19 patients with no or mild symptoms.
Due to limited medical care available at these hotels, it is of paramount importance to identify patients at risk of clinical deterioration.
This study aimed to develop and evaluate a graph-based deep learning approach for progressive hospital transfer risk prediction in a medicalized hotel setting.
arXiv Detail & Related papers (2022-12-31T14:59:35Z) - An explainable Transformer-based deep learning model for the prediction
of incident heart failure [22.513476932615845]
We developed a novel Transformer deep-learning model for prediction of incident heart failure involving 100,071 patients.
The model achieved 0.93 and 0.93 area under the receiver operator curve and 0.69 and 0.70 area under the precision-recall curve.
The importance of contextualised medical information was revealed in sensitivity analyses.
arXiv Detail & Related papers (2021-01-27T12:45:15Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
We consider the task of predicting two types of patient deterioration based on chest X-rays.
Due to the relative scarcity of COVID-19 patient data, existing solutions leverage supervised pretraining on related non-COVID images.
In this paper, we use self-supervised learning based on the momentum contrast (MoCo) method in the pretraining phase to learn more general image representations to use for downstream tasks.
arXiv Detail & Related papers (2021-01-13T07:03:17Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.