A Transformer-based survival model for prediction of all-cause mortality in heart failure patients: a multi-cohort study
- URL: http://arxiv.org/abs/2503.12317v1
- Date: Sun, 16 Mar 2025 01:53:50 GMT
- Title: A Transformer-based survival model for prediction of all-cause mortality in heart failure patients: a multi-cohort study
- Authors: Shishir Rao, Nouman Ahmed, Gholamreza Salimi-Khorshidi, Christopher Yau, Huimin Su, Nathalie Conrad, Folkert W Asselbergs, Mark Woodward, Rod Jackson, John GF Cleland, Kazem Rahimi,
- Abstract summary: We developed and validated TRisk, a Transformer-based AI model predicting 36-month mortality in heart failure patients.<n>Our study included 403,534 heart failure patients (ages 40-90) from 1,418 English general practices.
- Score: 5.831730826863567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed and validated TRisk, a Transformer-based AI model predicting 36-month mortality in heart failure patients by analysing temporal patient journeys from UK electronic health records (EHR). Our study included 403,534 heart failure patients (ages 40-90) from 1,418 English general practices, with 1,063 practices for model derivation and 355 for external validation. TRisk was compared against the MAGGIC-EHR model across various patient subgroups. With median follow-up of 9 months, TRisk achieved a concordance index of 0.845 (95% confidence interval: [0.841, 0.849]), significantly outperforming MAGGIC-EHR's 0.728 (0.723, 0.733) for predicting 36-month all-cause mortality. TRisk showed more consistent performance across sex, age, and baseline characteristics, suggesting less bias. We successfully adapted TRisk to US hospital data through transfer learning, achieving a C-index of 0.802 (0.789, 0.816) with 21,767 patients. Explainability analyses revealed TRisk captured established risk factors while identifying underappreciated predictors like cancers and hepatic failure that were important across both cohorts. Notably, cancers maintained strong prognostic value even a decade after diagnosis. TRisk demonstrated well-calibrated mortality prediction across both healthcare systems. Our findings highlight the value of tracking longitudinal health profiles and revealed risk factors not included in previous expert-driven models.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Predicting adverse outcomes following catheter ablation treatment for
atrial fibrillation [2.202746751854349]
We developed prognostic survival models for predicting adverse outcomes after catheter ablation treatment for AF.
Traditional and deep survival models were trained to predict major bleeding events and a composite of heart failure, stroke, cardiac arrest, and death.
arXiv Detail & Related papers (2022-11-22T02:55:51Z) - Interpretable estimation of the risk of heart failure hospitalization
from a 30-second electrocardiogram [2.167398752829277]
This study shows it is possible to estimate hospitalization for congestive heart failure by a 30 seconds single-lead electrocardiogram signal.
Using a machine learning approach not only results in greater predictive power but also provides clinically meaningful interpretations.
arXiv Detail & Related papers (2022-11-02T01:53:07Z) - Electrocardiographic Deep Learning for Predicting Post-Procedural
Mortality [9.192239774090208]
Deep learning algorithm was developed to leverage waveform signals from pre-operative ECGs to discriminate post-operative mortality.
Patients determined to be high risk by the deep learning model's risk prediction had an unadjusted odds ratio (OR) of 8.83 (5.57-13.20) for post-operative mortality.
Findings demonstrate how a novel deep learning algorithm, applied to pre-operative ECGs, can improve discrimination of post-operative mortality.
arXiv Detail & Related papers (2022-04-30T05:14:53Z) - An explainable Transformer-based deep learning model for the prediction
of incident heart failure [22.513476932615845]
We developed a novel Transformer deep-learning model for prediction of incident heart failure involving 100,071 patients.
The model achieved 0.93 and 0.93 area under the receiver operator curve and 0.69 and 0.70 area under the precision-recall curve.
The importance of contextualised medical information was revealed in sensitivity analyses.
arXiv Detail & Related papers (2021-01-27T12:45:15Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.