論文の概要: Deep Virtual-to-Real Distillation for Pedestrian Crossing Prediction
- arxiv url: http://arxiv.org/abs/2211.00856v1
- Date: Wed, 2 Nov 2022 03:53:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 12:16:55.241270
- Title: Deep Virtual-to-Real Distillation for Pedestrian Crossing Prediction
- Title(参考訳): 歩行者踏切予測のための深部仮想-実蒸留
- Authors: Jie Bai, Xin Fang, Jianwu Fang, Jianru Xue, and Changwei Yuan
- Abstract要約: 我々は, 簡便に生成可能な合成データを導入して, 仮想・実蒸留の枠組みを定式化する。
我々は,歩行者移動の豊富な情報を合成ビデオに借用し,単純かつ軽量な実装により,歩行者横断予測を実データで実現した。
このフレームワークの最先端性能は、徹底的な実験分析によって実証される。
- 参考スコア(独自算出の注目度): 18.17737928566106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian crossing is one of the most typical behavior which conflicts with
natural driving behavior of vehicles. Consequently, pedestrian crossing
prediction is one of the primary task that influences the vehicle planning for
safe driving. However, current methods that rely on the practically collected
data in real driving scenes cannot depict and cover all kinds of scene
condition in real traffic world. To this end, we formulate a deep virtual to
real distillation framework by introducing the synthetic data that can be
generated conveniently, and borrow the abundant information of pedestrian
movement in synthetic videos for the pedestrian crossing prediction in real
data with a simple and lightweight implementation. In order to verify this
framework, we construct a benchmark with 4667 virtual videos owning about 745k
frames (called Virtual-PedCross-4667), and evaluate the proposed method on two
challenging datasets collected in real driving situations, i.e., JAAD and PIE
datasets. State-of-the-art performance of this framework is demonstrated by
exhaustive experiment analysis. The dataset and code can be downloaded from the
website \url{http://www.lotvs.net/code_data/}.
- Abstract(参考訳): 横断歩道は、自動車の自然な運転行動と矛盾する最も典型的な行動の1つである。
従って、歩行者横断予測は、安全運転のための車両計画に影響を与える主要な課題の1つである。
しかし、現実の運転シーンにおいて実際に収集されたデータに依存する現在の手法では、現実の交通世界ではあらゆる種類のシーンを描写・カバーできない。
そこで我々は, 簡便かつ軽量な実装で, 歩行者の横断予測のための合成ビデオにおいて, 歩行者の動きの豊富な情報を借りて, 簡便に生成可能な合成データを導入することにより, 深層バーチャル・リアル蒸留の枠組みを定式化する。
このフレームワークを検証するために,約745kフレーム(Virtual-PedCross-4667)の仮想ビデオ4667のベンチマークを構築し,実走行環境で収集された2つの挑戦的データセット,すなわちJAADとPIEデータセットを用いて提案手法を評価する。
このフレームワークの最先端性能は、徹底的な実験分析によって実証される。
データセットとコードはWebサイト \url{http://www.lotvs.net/code_data/} からダウンロードできる。
関連論文リスト
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
本研究では,現実的でクローズドループなシミュレーションフレームワークであるDrivingSphereを提案する。
その中核となる考え方は、4Dの世界表現を構築し、実生活と制御可能な運転シナリオを生成することである。
動的で現実的なシミュレーション環境を提供することで、DrivingSphereは自律運転アルゴリズムの包括的なテストと検証を可能にする。
論文 参考訳(メタデータ) (2024-11-18T03:00:33Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Interaction Detection Between Vehicles and Vulnerable Road Users: A Deep
Generative Approach with Attention [9.442285577226606]
交差点における相互作用検出のための条件生成モデルを提案する。
道路利用者の行動の連続性に関する膨大な映像データを自動解析することを目的としています。
モデルの有効性は実世界のデータセットでテストすることによって検証された。
論文 参考訳(メタデータ) (2021-05-09T10:03:55Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
本稿では,実世界のスパースデータから運転行動をシミュレートする学習問題に対処するための新しいフレームワーク imingail を提案する。
私たちの知る限りでは、行動学習問題に対するデータ疎結合問題に最初に取り組みます。
論文 参考訳(メタデータ) (2021-03-22T13:42:11Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving [27.948417322786575]
本稿では,現実的なシナリオセンサデータを生成するための,シンプルで効果的な手法を提案する。
われわれのアプローチでは、テクスチャマップされたサーフを使用して、初期車両のパスやセットのパスからシーンを効率的に再構築する。
次に、SurfelGANネットワークを利用して、現実的なカメライメージを再構築し、自動運転車の新たな位置と方向を推定する。
論文 参考訳(メタデータ) (2020-05-08T04:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。