Multi-task Learning for Source Attribution and Field Reconstruction for
Methane Monitoring
- URL: http://arxiv.org/abs/2211.00864v1
- Date: Wed, 2 Nov 2022 04:21:01 GMT
- Title: Multi-task Learning for Source Attribution and Field Reconstruction for
Methane Monitoring
- Authors: Arka Daw, Kyongmin Yeo, Anuj Karpatne, Levente Klein
- Abstract summary: Inferring source information of greenhouse gases, such as methane, from spatially sparse sensor observations is an essential element in mitigating climate change.
We develop a multi-task learning framework that can provide high-fidelity reconstruction of the concentration field.
We demonstrate that our proposed framework is able to achieve accurate reconstruction of the methane concentrations from sparse sensor measurements.
- Score: 7.045900712659982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inferring the source information of greenhouse gases, such as methane, from
spatially sparse sensor observations is an essential element in mitigating
climate change. While it is well understood that the complex behavior of the
atmospheric dispersion of such pollutants is governed by the
Advection-Diffusion equation, it is difficult to directly apply the governing
equations to identify the source location and magnitude (inverse problem)
because of the spatially sparse and noisy observations, i.e., the pollution
concentration is known only at the sensor locations and sensors sensitivity is
limited. Here, we develop a multi-task learning framework that can provide
high-fidelity reconstruction of the concentration field and identify emission
characteristics of the pollution sources such as their location, emission
strength, etc. from sparse sensor observations. We demonstrate that our
proposed framework is able to achieve accurate reconstruction of the methane
concentrations from sparse sensor measurements as well as precisely pin-point
the location and emission strength of these pollution sources.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Subspace-Constrained Continuous Methane Leak Monitoring and Optimal
Sensor Placement [1.0323063834827415]
Minimizing the time required to identify a leak and the subsequent time to dispatch repair crews can significantly reduce the amount of methane released into the atmosphere.
The procedure developed utilizes permanently installed low-cost methane sensors at an oilfield facility to continuously monitor leaked gas concentration above background levels.
arXiv Detail & Related papers (2023-08-03T15:53:01Z) - Towards Spatial Equilibrium Object Detection [88.9747319572368]
In this paper, we study the spatial disequilibrium problem of modern object detectors.
We propose to quantify this problem by measuring the detection performance over zones.
This motivates us to design a more generalized measurement, termed Spatial equilibrium Precision.
arXiv Detail & Related papers (2023-01-14T17:33:26Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Air Pollution Hotspot Detection and Source Feature Analysis using
Cross-domain Urban Data [2.458537954999774]
Areas adjacent to pollution sources often have high ambient pollution concentrations, and those areas are commonly referred to as air pollution hotspots.
We propose a two-step approach to detect hotspots from mobile sensing data, which includes local spike detection and sample-weighted clustering.
As a soft-validation, we build hotspot inference models for cities with and without mobile sensing data.
arXiv Detail & Related papers (2022-11-15T18:44:03Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
Existing models for surface-level air pollution rely on extensive land-use datasets which are often locally restricted and temporally static.
This work proposes a deep learning approach for the prediction of ambient air pollution that only relies on remote sensing data that is globally available and frequently updated.
arXiv Detail & Related papers (2021-08-31T14:58:04Z) - HVAQ: A High-Resolution Vision-Based Air Quality Dataset [3.9523800511973017]
We present a high temporal and spatial resolution air quality dataset consisting of PM2.5, PM10, temperature, and humidity data.
We evaluate several vision-based state-of-art PM concentration prediction algorithms on our dataset and demonstrate that prediction accuracy increases with sensor density and image.
arXiv Detail & Related papers (2021-02-18T13:42:34Z) - Averaging Atmospheric Gas Concentration Data using Wasserstein
Barycenters [68.978070616775]
Hyperspectral satellite images report greenhouse gas concentrations worldwide on a daily basis.
We propose using Wasserstein barycenters coupled with weather data to average gas concentration data sets and better concentrate the mass around significant sources.
arXiv Detail & Related papers (2020-10-06T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.