論文の概要: Deep Learning for Inflexible Multi-Asset Hedging of incomplete market
- arxiv url: http://arxiv.org/abs/2211.00948v1
- Date: Wed, 2 Nov 2022 08:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 14:59:03.995850
- Title: Deep Learning for Inflexible Multi-Asset Hedging of incomplete market
- Title(参考訳): 不完全市場の非フレキシブルマルチアセットヘッジのための深層学習
- Authors: Ruochen Xiao and Qiaochu Feng and Ruxin Deng
- Abstract要約: 本稿では,不完全市場におけるヘッジ問題を,リスクファクター,不平等,離散取引日という3つの不完全性源で解決する。
RNN、LSTM、Mogrifier-LSTMを含む3つの中立ネットワークは、ヘッジ戦略を達成するために使用される。
Moggerifier-LSTM は MSE と Huber Loss の下で最も高速なモデルである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models trained under assumptions in the complete market usually don't take
effect in the incomplete market. This paper solves the hedging problem in
incomplete market with three sources of incompleteness: risk factor,
illiquidity, and discrete transaction dates. A new jump-diffusion model is
proposed to describe stochastic asset prices. Three neutral networks, including
RNN, LSTM, Mogrifier-LSTM are used to attain hedging strategies with MSE Loss
and Huber Loss implemented and compared.As a result, Mogrifier-LSTM is the
fastest model with the best results under MSE and Huber Loss.
- Abstract(参考訳): 完全な市場における仮定の下で訓練されたモデルは、通常不完全な市場では効果がない。
本稿では,不完全市場におけるヘッジ問題を,リスクファクター,不平等,離散取引日という3つの不完全性源で解決する。
確率的資産価格を記述するために,新しいジャンプ拡散モデルを提案する。
RNN, LSTM, Mogrifier-LSTM の3つの中立ネットワークを用いて, MSE Loss と Huber Loss のヘッジ戦略を実装・比較し, その結果, Mogrifier-LSTM は MSE と Huber Loss が最も高速なモデルとなった。
関連論文リスト
- Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
本研究では,リスクの高い環境に適した強化学習に基づくポートフォリオ管理モデルを提案する。
マルチヘッドアテンションを持つ畳み込みニューラルネットワークを用いたソフトアクタ・クリティカル(SAC)エージェントを用いてモデルを実装した。
市場のボラティリティ(変動性)が変化する2つの16カ月間にわたってテストされたこのモデルは、ベンチマークを著しく上回った。
論文 参考訳(メタデータ) (2024-08-09T23:36:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Learning in Imperfect Environment: Multi-Label Classification with
Long-Tailed Distribution and Partial Labels [53.68653940062605]
新しいタスク, 部分ラベリングとLong-Tailed Multi-Label Classification (PLT-MLC) を導入する。
その結果,ほとんどのLT-MLCとPL-MLCは劣化MLCの解決に失敗していることがわかった。
textbfCOrrection $rightarrow$ textbfModificattextbfIon $rightarrow$ balantextbfCe。
論文 参考訳(メタデータ) (2023-04-20T20:05:08Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
本稿では,Deep Reinforcement Learning (DRL)アルゴリズムを用いて,株式市場における収益性取引を生成するモデルを提案する。
我々は、市場が課す制約を考慮して、部分的に観測されたマルコフ決定プロセス(POMDP)モデルとして取引問題を定式化する。
次に, Twin Delayed Deep Deterministic Policy Gradient (TD3) アルゴリズムを用いて, 2.68 Sharpe Ratio を未知のデータセットに報告し, 定式化した POMDP 問題を解く。
論文 参考訳(メタデータ) (2022-07-05T11:34:29Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
我々は,Symmetric NMF問題に対するSymNMF-Netと呼ばれるニューラルネットワークを提案する。
各ブロックの推測は最適化の単一イテレーションに対応することを示す。
実世界のデータセットに関する実証的な結果は、我々のSymNMF-Netの優位性を示している。
論文 参考訳(メタデータ) (2022-05-26T08:17:39Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques [0.0]
リスク仲裁または合併仲裁は、M&A取引の成功を推測する投資戦略である。
事前の取引状況の予測は、リスク仲裁者にとって非常に重要である。
本稿では,買収成功予測問題に対するMLとDLに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-08-05T21:26:45Z) - BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised
Named Entity Recognition [57.2201011783393]
条件付き隠れマルコフモデル(CHMM)
CHMMは、入力トークンのBERT埋め込みからトークン単位の遷移と放出確率を予測する。
BERTベースのNERモデルを微調整し、ラベルをCHMMで推論する。
論文 参考訳(メタデータ) (2021-05-26T21:18:48Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z) - A Bayesian Long Short-Term Memory Model for Value at Risk and Expected
Shortfall Joint Forecasting [26.834110647177965]
バリュー・アット・リスク(VaR)と期待不足(ES)は、市場リスクを測定し、極端な市場の動きを管理するために金融セクターで広く利用されている。
量子化スコア関数と非対称ラプラス密度の最近の関係は、VaRとESのジョイントモデリングのためのフレキシブルな可能性に基づく枠組みにつながっている。
Asymmetric Laplace quasi-likelihoodをベースとしたハイブリッドモデルを開発し、機械学習のLong Short-Term Memory(LSTM)時系列モデリング技術を用いて、VaRとESの基盤となるダイナミクスを効率的に捉える。
論文 参考訳(メタデータ) (2020-01-23T05:13:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。