論文の概要: Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
- arxiv url: http://arxiv.org/abs/2304.07619v5
- Date: Wed, 11 Sep 2024 21:23:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:51:28.624083
- Title: Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
- Title(参考訳): ChatGPTは株価変動を予測できるか? 予測可能性と大規模言語モデル
- Authors: Alejandro Lopez-Lira, Yuehua Tang,
- Abstract要約: ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
- 参考スコア(独自算出の注目度): 51.3422222472898
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines, even without direct financial training. ChatGPT scores significantly predict out-of-sample daily stock returns, subsuming traditional methods, and predictability is stronger among smaller stocks and following negative news. To explain these findings, we develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs. The model generates several key predictions, which we empirically test: (i) it establishes a critical threshold in AI capabilities necessary for profitable predictions, (ii) it demonstrates that only advanced LLMs can effectively interpret complex information, and (iii) it predicts that widespread LLM adoption can enhance market efficiency. Our results suggest that sophisticated return forecasting is an emerging capability of AI systems and that these technologies can alter information diffusion and decision-making processes in financial markets. Finally, we introduce an interpretability framework to evaluate LLMs' reasoning, contributing to AI transparency and economic decision-making.
- Abstract(参考訳): 本稿では,ChatGPT のような大規模言語モデル (LLM) によるニュース見出しによる株価変動の予測能力について述べる。
チャットGPTのスコアは、従来の手法を仮定し、サンプル外1日当たりのリターンを著しく予測し、より小さな株の間で予測可能性が強くなり、ネガティブなニュースが続く。
これらの知見を説明するため,情報容量の制約,過小反応,制限対アビトラージュ,LLMを組み込んだ理論的モデルを構築した。
モデルはいくつかの重要な予測を生成し、それを経験的にテストします。
i)黒字予測に必要なAI能力において重要なしきい値を確立すること。
(II)高度なLCMだけが複雑な情報を効果的に解釈できることを示し、
三 LLM の普及により市場効率が向上するおそれがある。
我々の結果は、洗練されたリターン予測はAIシステムの新たな能力であり、これらの技術は金融市場の情報拡散や意思決定プロセスを変えることができることを示唆している。
最後に、LLMの推論を評価するための解釈可能性フレームワークを導入し、AIの透明性と経済的な意思決定に寄与する。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Monetizing Currency Pair Sentiments through LLM Explainability [2.572906392867547]
大規模言語モデル(LLM)は、今日の組織のほとんどすべての領域において重要な役割を担います。
我々は,感情分析の妥当性を説明するために,LLMをポストホックモデルに依存しないツールとして活用する新しい手法を提案する。
本手法を金融分野に適用し,公開ニュースフィードデータと市場価格を融合した通貨対対価の予測を行う。
論文 参考訳(メタデータ) (2024-07-29T11:58:54Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Ploutos: Towards interpretable stock movement prediction with financial
large language model [43.51934592920784]
PloutosはPloutosGenとPloutosGPTで構成される新しい金融フレームワークである。
PloutosGenには、テキストや数値など、さまざまなモーダルデータを分析し、異なる観点から定量的戦略を提供する、複数の主要な専門家が含まれている。
PloutosGPTのトレーニング戦略は、GPT-4を誘導して合理性を生成するリアビューミラープロンプト機構と、LLMを微調整するための動的トークン重み付け機構を活用する。
論文 参考訳(メタデータ) (2024-02-18T10:28:18Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。