論文の概要: A Profit-Maximizing Strategy for Advertising on the e-Commerce Platforms
- arxiv url: http://arxiv.org/abs/2211.01160v2
- Date: Mon, 21 Aug 2023 06:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 02:37:05.847635
- Title: A Profit-Maximizing Strategy for Advertising on the e-Commerce Platforms
- Title(参考訳): 電子商取引プラットフォーム上での広告収益最大化戦略
- Authors: Lianghai Xiao, Yixing Zhao, Jiwei Chen
- Abstract要約: 提案手法は,対象のオーディエンスを実際の購入者へ変換する確率を最大化するために,最適な機能セットを見つけることを目的としている。
提案手法が予算制約で広告戦略を効果的に最適化できることを示すため,Tmall の現実データを用いた実証的研究を行った。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The online advertising management platform has become increasingly popular
among e-commerce vendors/advertisers, offering a streamlined approach to reach
target customers. Despite its advantages, configuring advertising strategies
correctly remains a challenge for online vendors, particularly those with
limited resources. Ineffective strategies often result in a surge of
unproductive ``just looking'' clicks, leading to disproportionately high
advertising expenses comparing to the growth of sales. In this paper, we
present a novel profit-maximing strategy for targeting options of online
advertising. The proposed model aims to find the optimal set of features to
maximize the probability of converting targeted audiences into actual buyers.
We address the optimization challenge by reformulating it as a multiple-choice
knapsack problem (MCKP). We conduct an empirical study featuring real-world
data from Tmall to show that our proposed method can effectively optimize the
advertising strategy with budgetary constraints.
- Abstract(参考訳): このオンライン広告管理プラットフォームは、eコマースベンダー/広告業者の間でますます人気が高まり、ターゲット顧客へのリーチを合理化するアプローチを提供している。
アドバンテージにもかかわらず、広告戦略を正しく設定することは、オンラインベンダー、特に限られたリソースを持つ企業にとって課題である。
不効果的な戦略は、しばしば非生産的な「ただの」クリックが急増し、売上の成長と比べて広告費が不当に高くなる。
本稿では,オンライン広告をターゲットとする新たな収益最大化戦略を提案する。
提案モデルは,ターゲットとするオーディエンスを実際の購入者に変換する確率を最大化するために,最適な特徴集合を見つけることを目的としている。
本稿では,この最適化課題を,MCKP (Multiple-choice knapsack problem) として再検討する。
提案手法が予算制約で広告戦略を効果的に最適化できることを示すため,Tmall の現実データを用いた実証的研究を行った。
関連論文リスト
- Optimizing Search Advertising Strategies: Integrating Reinforcement Learning with Generalized Second-Price Auctions for Enhanced Ad Ranking and Bidding [36.74368014856906]
本稿では,多様なユーザインタラクションに適応し,広告主のコスト,ユーザ関連性,プラットフォーム収益のバランスを最適化するモデルを提案する。
提案手法は,広告の配置精度とコスト効率を大幅に向上させ,実際のシナリオにおけるモデルの適用性を示すものである。
論文 参考訳(メタデータ) (2024-05-22T06:30:55Z) - Persuasion Strategies in Advertisements [68.70313043201882]
我々は,説得戦略の広範な語彙を導入し,説得戦略を付加した最初の広告画像コーパスを構築した。
次に,マルチモーダル学習による説得戦略予測のタスクを定式化する。
我々は、Fortune-500社の1600件の広告キャンペーンについて、現実世界でケーススタディを実施している。
論文 参考訳(メタデータ) (2022-08-20T07:33:13Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
企業マーケティングの共通のゴールは、様々な効果的なマーケティング戦略を活用することで、収益/利益を最大化することである。
商品の収益性に関する信頼性のある情報を見つけることは、ほとんどの製品が一定の時期にピークを迎える傾向があるため困難である。
本稿では、経済行動に基づく収益問題に対処し、ターゲットマーケティングのための0n-shelf Popular and most Profitable Products(OPPPs)を実行するための一般的な利益志向の枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-26T02:07:25Z) - Bid Optimization using Maximum Entropy Reinforcement Learning [0.3149883354098941]
本稿では、リアルタイム入札(RTB)における強化学習(RL)を用いた広告主の入札戦略の最適化に焦点をあてる。
まず、広く受け入れられている線形入札関数を用いて、すべての印象のベース価格を計算し、RTBオークション環境から派生した可変調整係数で最適化する。
最後に、公開データセットに関する実証的研究により、提案した入札戦略がベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-10-11T06:53:53Z) - E-Commerce Promotions Personalization via Online Multiple-Choice
Knapsack with Uplift Modeling [1.027974860479791]
本稿では,オンライン制約付きマルチコースプロモーションパーソナライズ問題について検討する。
本研究は,オンライン多重選択Knapsack問題としてこの問題を定式化する。
予算制約の遵守を保証するリアルタイム適応手法を提案する。
論文 参考訳(メタデータ) (2021-08-11T15:09:16Z) - A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in
Online Advertising [53.636153252400945]
本稿では,自動入札のための総合的マルチエージェント強化学習フレームワーク,すなわちMAABを提案し,自動入札戦略を学習する。
当社のアプローチは、社会的福祉の観点から、いくつかの基準的手法を上回り、広告プラットフォームの収益を保証します。
論文 参考訳(メタデータ) (2021-06-11T08:07:14Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
本稿では,ディスプレイ広告プラットフォーム上での動的入札戦略レコメンデーションのためのレコメンデーションシステムを提案する。
ニューラルネットワークをエージェントとして使用して,広告主のプロファイルや過去の採用行動に基づいて,広告主の要求を予測する。
オンライン評価は、広告主の広告パフォーマンスを最適化できることを示している。
論文 参考訳(メタデータ) (2021-05-25T17:06:59Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
本稿では,これらの問題に対処するディープインテントシーケンス広告(DISA)手法を提案する。
解釈可能性の鍵となる部分は、消費者の購入意図を理解することである。
論文 参考訳(メタデータ) (2020-09-03T05:12:26Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。