論文の概要: Optimizing Search Advertising Strategies: Integrating Reinforcement Learning with Generalized Second-Price Auctions for Enhanced Ad Ranking and Bidding
- arxiv url: http://arxiv.org/abs/2405.13381v2
- Date: Wed, 29 May 2024 05:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:22:47.119477
- Title: Optimizing Search Advertising Strategies: Integrating Reinforcement Learning with Generalized Second-Price Auctions for Enhanced Ad Ranking and Bidding
- Title(参考訳): 検索広告戦略の最適化:強化広告ランキングと入札のための強化強化学習と一般第二価格オークションの統合
- Authors: Chang Zhou, Yang Zhao, Jin Cao, Yi Shen, Xiaoling Cui, Chiyu Cheng,
- Abstract要約: 本稿では,多様なユーザインタラクションに適応し,広告主のコスト,ユーザ関連性,プラットフォーム収益のバランスを最適化するモデルを提案する。
提案手法は,広告の配置精度とコスト効率を大幅に向上させ,実際のシナリオにおけるモデルの適用性を示すものである。
- 参考スコア(独自算出の注目度): 36.74368014856906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the integration of strategic optimization methods in search advertising, focusing on ad ranking and bidding mechanisms within E-commerce platforms. By employing a combination of reinforcement learning and evolutionary strategies, we propose a dynamic model that adjusts to varying user interactions and optimizes the balance between advertiser cost, user relevance, and platform revenue. Our results suggest significant improvements in ad placement accuracy and cost efficiency, demonstrating the model's applicability in real-world scenarios.
- Abstract(参考訳): 本稿では,Eコマースプラットフォームにおける広告ランキングと入札機構に着目し,検索広告における戦略的最適化手法の統合について検討する。
強化学習と進化戦略の組み合わせを用いて,多様なユーザインタラクションに適応し,広告主コスト,ユーザ関連性,プラットフォーム収益のバランスを最適化する動的モデルを提案する。
提案手法は,広告の配置精度とコスト効率を大幅に向上させ,実際のシナリオにおけるモデルの適用性を示すものである。
関連論文リスト
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
競売業者がプライベートコストで戦略的売り手からサービスを取得しようとする競売について検討する。
我々の目標は、取得したサービスの品質と販売者の総コストとの差を最大化する計算効率の良いオークションを設計することである。
論文 参考訳(メタデータ) (2024-11-20T18:06:55Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - Demystifying Advertising Campaign Bid Recommendation: A Constraint
target CPA Goal Optimization [19.857681941728597]
本稿では,広告主が望むtCPA目標を達成するための入札最適化シナリオを提案する。
我々は厳格に定式化された制約付き最適化問題を解くことで決定を下すために最適化エンジンを構築した。
提案モデルでは,広告主の過去のオークション行動に対する推測を行うことで,広告主の期待に応える入札を自然に推奨することができる。
論文 参考訳(メタデータ) (2022-12-26T07:43:26Z) - A Profit-Maximizing Strategy for Advertising on the e-Commerce Platforms [1.565361244756411]
提案手法は,対象のオーディエンスを実際の購入者へ変換する確率を最大化するために,最適な機能セットを見つけることを目的としている。
提案手法が予算制約で広告戦略を効果的に最適化できることを示すため,Tmall の現実データを用いた実証的研究を行った。
論文 参考訳(メタデータ) (2022-10-31T01:45:42Z) - Bidding Agent Design in the LinkedIn Ad Marketplace [16.815498720115443]
オンラインマーケットプレースにおける自動入札エージェントの設計のための汎用最適化フレームワークを構築した。
結果として、フレームワークは、例えば、複数のプラットフォームにまたがる広告グループの共同最適化を可能にし、それぞれが独自のオークションフォーマットを実行している。
このフレームワークに基づいたLinkedInの広告マーケットプレースで、デプロイされた入札システムの実践的な学習を共有します。
論文 参考訳(メタデータ) (2022-02-25T03:01:57Z) - A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in
Online Advertising [53.636153252400945]
本稿では,自動入札のための総合的マルチエージェント強化学習フレームワーク,すなわちMAABを提案し,自動入札戦略を学習する。
当社のアプローチは、社会的福祉の観点から、いくつかの基準的手法を上回り、広告プラットフォームの収益を保証します。
論文 参考訳(メタデータ) (2021-06-11T08:07:14Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
本稿では,ディスプレイ広告プラットフォーム上での動的入札戦略レコメンデーションのためのレコメンデーションシステムを提案する。
ニューラルネットワークをエージェントとして使用して,広告主のプロファイルや過去の採用行動に基づいて,広告主の要求を予測する。
オンライン評価は、広告主の広告パフォーマンスを最適化できることを示している。
論文 参考訳(メタデータ) (2021-05-25T17:06:59Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。