論文の概要: Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems
- arxiv url: http://arxiv.org/abs/2211.01323v2
- Date: Fri, 4 Nov 2022 15:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 13:32:15.611588
- Title: Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems
- Title(参考訳): 胸部異常分類訓練のための潜在拡散モデルを用いた匿名胸部x線画像の生成
- Authors: Kai Packh\"auser, Lukas Folle, Florian Thamm, Andreas Maier
- Abstract要約: 胸部X線写真における生体認証は、研究目的のためにそのようなデータの公開を妨げている。
この研究は、高品質なクラス条件画像の匿名胸部X線データセットを合成するために潜時拡散モデルを用いている。
- 参考スコア(独自算出の注目度): 7.909848251752742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The availability of large-scale chest X-ray datasets is a requirement for
developing well-performing deep learning-based algorithms in thoracic
abnormality detection and classification. However, biometric identifiers in
chest radiographs hinder the public sharing of such data for research purposes
due to the risk of patient re-identification. To counteract this issue,
synthetic data generation offers a solution for anonymizing medical images.
This work employs a latent diffusion model to synthesize an anonymous chest
X-ray dataset of high-quality class-conditional images. We propose a
privacy-enhancing sampling strategy to ensure the non-transference of biometric
information during the image generation process. The quality of the generated
images and the feasibility of serving as exclusive training data are evaluated
on a thoracic abnormality classification task. Compared to a real classifier,
we achieve competitive results with a performance gap of only 3.5% in the area
under the receiver operating characteristic curve.
- Abstract(参考訳): 胸部X線データセットの大規模利用は、胸部異常の検出と分類において、優れたディープラーニングベースのアルゴリズムを開発するための要件である。
しかし、胸部X線写真における生体認証は、患者の再同定のリスクのため、研究目的のためにそのようなデータの公開共有を妨げる。
この問題に対処するため、合成データ生成は医療画像の匿名化のためのソリューションを提供する。
本研究は, 潜在拡散モデルを用いて高品質クラス条件画像の匿名胸部x線データセットを合成する。
本稿では,画像生成過程における生体情報の非移動性を保証するプライバシエンハンシングサンプリング戦略を提案する。
胸部異常分類タスクにおいて、生成された画像の品質と排他的トレーニングデータとして機能する可能性を評価する。
実分類器と比較すると,受信機動作特性曲線下の領域における性能差は3.5%であった。
関連論文リスト
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Deep Learning-based Anonymization of Chest Radiographs: A
Utility-preserving Measure for Patient Privacy [7.240611820374677]
従来の匿名化処理は、画像中の個人情報をブラックボックスで隠蔽して行う。
このような単純な測定は、胸部X線写真に生体情報を保持し、リンケージ攻撃によって患者の再同定を可能にする。
胸部X線画像の匿名化を目的とした,初となる深層学習型アプローチ(PriCheXy-Net)を提案する。
論文 参考訳(メタデータ) (2022-09-23T11:36:32Z) - Debiasing Deep Chest X-Ray Classifiers using Intra- and Post-processing
Methods [9.152759278163954]
本研究では、すでに訓練済みのニューラルネットワークを微調整および刈り取ることに基づく2つの新しいプロセス内処理手法を提案する。
我々の知る限りでは、胸部X線写真における脱バイアス法の研究としては、これが最初の試みの1つである。
論文 参考訳(メタデータ) (2022-07-26T10:18:59Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
ノベルティ検出のためのハイブリッドモデル-変換に基づく埋め込み学習(TEND)を提案する。
事前訓練されたオートエンコーダを画像特徴抽出器として、TENDは変換されたオートエンコーダから分布内データの特徴埋め込みを偽のアウト・オブ・ディストリビューション入力として識別する。
論文 参考訳(メタデータ) (2021-07-31T00:10:26Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Computer-aided abnormality detection in chest radiographs in a clinical
setting via domain-adaptation [0.23624125155742057]
深層学習(DL)モデルは、放射線医が胸部X線写真から肺疾患の診断を助けるために医療センターに配備されている。
これらの訓練済みDLモデルが臨床現場で一般化する能力は、公開と非公開のラジオグラフィー間のデータ分布の変化のため、貧弱である。
本研究では,ドメインシフト検出と除去手法を導入し,この問題を克服する。
論文 参考訳(メタデータ) (2020-12-19T01:01:48Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。