論文の概要: Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image
- arxiv url: http://arxiv.org/abs/2405.12872v1
- Date: Tue, 21 May 2024 15:41:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 12:20:58.561203
- Title: Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image
- Title(参考訳): 医用画像における半教師付き異常検出のための空間認識アテンション生成適応ネットワーク
- Authors: Zerui Zhang, Zhichao Sun, Zelong Liu, Bo Du, Rui Yu, Zhou Zhao, Yongchao Xu,
- Abstract要約: 本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
- 参考スコア(独自算出の注目度): 63.59114880750643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical anomaly detection is a critical research area aimed at recognizing abnormal images to aid in diagnosis.Most existing methods adopt synthetic anomalies and image restoration on normal samples to detect anomaly. The unlabeled data consisting of both normal and abnormal data is not well explored. We introduce a novel Spatial-aware Attention Generative Adversarial Network (SAGAN) for one-class semi-supervised generation of health images.Our core insight is the utilization of position encoding and attention to accurately focus on restoring abnormal regions and preserving normal regions. To fully utilize the unlabelled data, SAGAN relaxes the cyclic consistency requirement of the existing unpaired image-to-image conversion methods, and generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.Subsequently, the discrepancy between the generated healthy image and the original image is utilized as an anomaly score.Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
- Abstract(参考訳): 医学的異常検出は、診断を助けるために異常画像を認識することを目的とした重要な研究分野であり、既存の方法の多くは、正常なサンプルに合成異常と画像復元を採用して異常を検知している。
正常データと異常データの両方からなるラベルなしデータは、十分に調査されていない。
我々は,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)を新たに導入し,位置エンコーディングと注意力を活用し,異常領域の復元や正常領域の保存に的を絞った。
そこで,SAGANは,既存の画像から画像への変換手法の周期的整合性要件を緩和し,正常な画像の再構成と擬似異常画像の復元によって導かれる高品質な健康画像を生成し,その結果,生成した健康画像とオリジナル画像との相違を異常スコアとして活用する。
関連論文リスト
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
脳画像における教師なし異常検出のためのMasked Autoencoder-enhanced Diffusion Model (MAEDiff)を提案する。
MAEDiffは、階層的なパッチ分割を含む。上層パッチを重畳して健全なイメージを生成し、サブレベルパッチで動作するマスク付きオートエンコーダに基づくメカニズムを実装し、未通知領域の状態を高める。
論文 参考訳(メタデータ) (2024-01-19T08:54:54Z) - ReSynthDetect: A Fundus Anomaly Detection Network with Reconstruction
and Synthetic Features [5.655822001453255]
本稿では,正常画像のモデリングのための再構成ネットワークと,基礎画像の外観に整合した合成異常を生成する異常生成器を提案する。
実験の結果,EyeQではAUROCが9%改善し,IDRiDではAUPRが17.1%改善した。
論文 参考訳(メタデータ) (2023-12-27T08:40:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
我々は、既知の正規画像と未ラベル画像を利用するために、一級半教師付き学習(OC-SSL)を導入する。
再構成ネットワークのアンサンブルは、正規画像の分布と、正規画像と未ラベル画像の両方の分布をモデル化するように設計されている。
本稿では,異常を直接検出するのではなく,異常スコアを改良する自己教師型学習の新しい視点を提案する。
論文 参考訳(メタデータ) (2022-10-09T11:18:45Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。