論文の概要: Fair and Optimal Classification via Post-Processing
- arxiv url: http://arxiv.org/abs/2211.01528v3
- Date: Mon, 5 Jun 2023 04:40:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 04:15:50.501183
- Title: Fair and Optimal Classification via Post-Processing
- Title(参考訳): ポストプロセッシングによる公平かつ最適分類
- Authors: Ruicheng Xian, Lang Yin, Han Zhao
- Abstract要約: 本稿では、分類問題における人口統計学の特質的トレードオフの完全な評価について述べる。
ランダム化および属性認識フェア分類器によって達成可能な最小誤差率は、ワッサーシュタイン・バリセンタ問題の最適値によって与えられることを示す。
- 参考スコア(独自算出の注目度): 10.163721748735801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To mitigate the bias exhibited by machine learning models, fairness criteria
can be integrated into the training process to ensure fair treatment across all
demographics, but it often comes at the expense of model performance.
Understanding such tradeoffs, therefore, underlies the design of fair
algorithms. To this end, this paper provides a complete characterization of the
inherent tradeoff of demographic parity on classification problems, under the
most general multi-group, multi-class, and noisy setting. Specifically, we show
that the minimum error rate achievable by randomized and attribute-aware fair
classifiers is given by the optimal value of a Wasserstein-barycenter problem.
On the practical side, our findings lead to a simple post-processing algorithm
that derives fair classifiers from score functions, which yields the optimal
fair classifier when the score is Bayes optimal. We provide suboptimality
analysis and sample complexity for our algorithm, and demonstrate its
effectiveness on benchmark datasets.
- Abstract(参考訳): 機械学習モデルによって示されるバイアスを軽減するために、公正度基準をトレーニングプロセスに統合して、すべての人口層で公平な待遇を確保することができるが、モデルのパフォーマンスを犠牲にすることが多い。
このようなトレードオフを理解することは、公正なアルゴリズムの設計の基礎となる。
そこで,本稿では,分類問題における階層的パリティの固有のトレードオフを,最も一般的なマルチグループ,マルチクラス,騒がしい設定下で完全に特徴づける。
具体的には、ランダム化および属性認識フェア分類器によって達成可能な最小誤差率は、ワッサーシュタイン・バリセンタ問題の最適値によって与えられることを示す。
実用面では,スコア関数から公正分類器を導出する単純な後処理アルゴリズムを導出し,そのスコアがベイズ最適である場合には最適フェア分類器を得る。
アルゴリズムの最適性解析とサンプル複雑性を提供し,ベンチマークデータセット上での有効性を実証する。
関連論文リスト
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
本稿では,自己教師型学習環境におけるフェアエンコーダの学習について検討する。
すべてのデータはラベル付けされておらず、そのごく一部だけが機密属性で注釈付けされている。
論文 参考訳(メタデータ) (2024-06-09T08:11:12Z) - Optimal Group Fair Classifiers from Linear Post-Processing [10.615965454674901]
本稿では,グループフェアネス基準の統一されたファミリーの下でモデルバイアスを緩和するフェア分類のためのポストプロセッシングアルゴリズムを提案する。
与えられたベースモデルの出力スコアを、(予測された)グループのメンバシップの線形結合である「公正コスト」で再計算することで、公平性を達成する。
論文 参考訳(メタデータ) (2024-05-07T05:58:44Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Beyond Adult and COMPAS: Fairness in Multi-Class Prediction [8.405162568925405]
我々は、この問題を、事前訓練された(そして潜在的に不公平な)分類器を、対象のグループフェアネス要件を満たすモデルの集合に「投影する」という観点で定式化する。
投影された分類器を並列化して計算し、サンプルの複雑性と収束保証の両方を導出する反復アルゴリズムを提案する。
また,複数のクラス,複数の交差保護グループ,100万以上のサンプルを持つオープンデータセット上で,本手法を大規模に評価した。
論文 参考訳(メタデータ) (2022-06-15T20:29:33Z) - Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy [7.215903549622416]
最適分類木を学習するための混合整数最適化フレームワークを提案する。
我々は、一般的なデータセットの公平な分類のための最先端アプローチに対して、我々の手法をベンチマークする。
我々の手法は、ほぼ完全に一致した決定を一貫して見つけ出すが、他の手法は滅多にない。
論文 参考訳(メタデータ) (2022-01-24T19:47:10Z) - Group-Aware Threshold Adaptation for Fair Classification [9.496524884855557]
複数のフェアネス制約を克服する新しいポストプロセッシング手法を提案する。
理論的には,同条件下での既存手法よりも近似最適に近い上界を許容する。
実験の結果,本手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-08T04:36:37Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。