論文の概要: Evaluating a Synthetic Image Dataset Generated with Stable Diffusion
- arxiv url: http://arxiv.org/abs/2211.01777v1
- Date: Thu, 3 Nov 2022 13:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 12:41:42.258094
- Title: Evaluating a Synthetic Image Dataset Generated with Stable Diffusion
- Title(参考訳): 安定拡散による合成画像データセットの評価
- Authors: Andreas St\"ockl
- Abstract要約: この合成画像データベースは、機械学習アプリケーションにおけるデータ拡張のためのトレーニングデータとして使用することができる。
解析によれば、安定拡散は多数の概念に対して正しい画像を生成することができるが、同時に様々な表現も生成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We generate synthetic images with the "Stable Diffusion" image generation
model using the Wordnet taxonomy and the definitions of concepts it contains.
This synthetic image database can be used as training data for data
augmentation in machine learning applications, and it is used to investigate
the capabilities of the Stable Diffusion model.
Analyses show that Stable Diffusion can produce correct images for a large
number of concepts, but also a large variety of different representations. The
results show differences depending on the test concepts considered and problems
with very specific concepts. These evaluations were performed using a vision
transformer model for image classification.
- Abstract(参考訳): 我々は,Wordnet分類とそれを含む概念の定義を用いて,「安定拡散」画像生成モデルを用いて合成画像を生成する。
この合成画像データベースは、機械学習アプリケーションにおけるデータ拡張のためのトレーニングデータとして使用することができ、安定拡散モデルの能力を調べるために使用される。
解析によれば、安定拡散は多数の概念に対して正しい画像を生成することができるが、同時に様々な表現も生成できる。
結果は,検討したテスト概念と,非常に具体的な概念を持つ問題によって差異を示す。
これらの評価は視覚変換器モデルを用いて画像分類を行った。
関連論文リスト
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - Comparative Analysis of Generative Models: Enhancing Image Synthesis with VAEs, GANs, and Stable Diffusion [0.0]
本稿では,変分オートエンコーダ(VAE),GAN(Generative Adversarial Networks),安定拡散(Stable Diffusion)の3つの主要な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-08-16T13:50:50Z) - Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline [3.524869467682149]
安定拡散を用いた合成画像データセットの自動生成パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
論文 参考訳(メタデータ) (2024-06-03T07:44:08Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
我々は、深層モデルの堅牢性をベンチマークするハードイメージのためのデータソースとして、生成モデルを紹介した。
このベンチマークを ImageNet-D と呼ぶ以前の作業よりも、背景、テクスチャ、材料が多様化したイメージを生成することができます。
我々の研究は、拡散モデルが視覚モデルをテストするのに効果的な情報源となることを示唆している。
論文 参考訳(メタデータ) (2024-03-27T17:23:39Z) - A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
of Data [55.748186000425996]
最近の進歩は、拡散モデルが高品質な画像を生成することを示している。
我々はこの現象を階層的なデータ生成モデルで研究する。
本分析は拡散モデルにおける時間とスケールの関係を特徴付ける。
論文 参考訳(メタデータ) (2024-02-26T19:52:33Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
本研究では, 合成画像のスケーリング法則について, テクスト・ツー・イメージ・モデルの現状から検討した。
合成画像は、CLIPトレーニングの実際の画像と似ているが、やや効果の低いスケーリング傾向を示す。
論文 参考訳(メタデータ) (2023-12-07T18:59:59Z) - Stable Diffusion for Data Augmentation in COCO and Weed Datasets [5.81198182644659]
本研究は, 安定拡散モデルの有効性を評価するために, 7つの共通カテゴリーと3つの広く分布する雑草種を利用した。
安定拡散に基づく3つの手法(画像から画像への変換,ドリームブース,コントロールネット)を,焦点の異なる画像生成に利用した。
そして、これらの合成画像に基づいて分類・検出タスクを行い、その性能を原画像で訓練されたモデルと比較した。
論文 参考訳(メタデータ) (2023-12-07T02:23:32Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with
Synthetic Images [37.29348016920314]
そこで本研究では,既製の生成モデルを利用して合成訓練画像を生成する新しいフレームワークを提案する。
クラス名の曖昧さ、ナイーブなプロンプトの多様性の欠如、ドメインシフトに対処する。
我々のフレームワークは、より合成データによる認識モデルの性能を一貫して向上させる。
論文 参考訳(メタデータ) (2023-12-04T18:35:27Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。