論文の概要: Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline
- arxiv url: http://arxiv.org/abs/2406.01071v1
- Date: Mon, 3 Jun 2024 07:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:58:18.723517
- Title: Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline
- Title(参考訳): 合成画像データセット生成パイプラインによるビジュアルカーブランド分類
- Authors: Jan Lippemeier, Stefanie Hittmeyer, Oliver Niehörster, Markus Lange-Hegermann,
- Abstract要約: 安定拡散を用いた合成画像データセットの自動生成パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
- 参考スコア(独自算出の注目度): 3.524869467682149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in machine learning, particularly in deep learning and object detection, have significantly improved performance in various tasks, including image classification and synthesis. However, challenges persist, particularly in acquiring labeled data that accurately represents specific use cases. In this work, we propose an automatic pipeline for generating synthetic image datasets using Stable Diffusion, an image synthesis model capable of producing highly realistic images. We leverage YOLOv8 for automatic bounding box detection and quality assessment of synthesized images. Our contributions include demonstrating the feasibility of training image classifiers solely on synthetic data, automating the image generation pipeline, and describing the computational requirements for our approach. We evaluate the usability of different modes of Stable Diffusion and achieve a classification accuracy of 75%.
- Abstract(参考訳): 近年の機械学習,特にディープラーニングとオブジェクト検出の進歩は,画像分類や合成など,様々なタスクのパフォーマンスを著しく向上させた。
しかし、特に特定のユースケースを正確に表現したラベル付きデータを取得する際には、課題は継続する。
本研究では,高精細な画像を生成可能な画像合成モデルであるStable Diffusionを用いて,合成画像データセットを生成するための自動パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
コントリビューションには、合成データのみに基づく画像分類器の訓練の実現可能性、画像生成パイプラインの自動化、そして我々のアプローチの計算要件の説明が含まれる。
安定拡散の異なるモードのユーザビリティを評価し,75%の分類精度を実現する。
関連論文リスト
- Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
本研究では, 合成画像のスケーリング法則について, テクスト・ツー・イメージ・モデルの現状から検討した。
合成画像は、CLIPトレーニングの実際の画像と似ているが、やや効果の低いスケーリング傾向を示す。
論文 参考訳(メタデータ) (2023-12-07T18:59:59Z) - WinSyn: A High Resolution Testbed for Synthetic Data [41.11481327112564]
我々は、手続き的モデリング技術を用いて高品質な合成データを作成するためのユニークなデータセットとテストベッドであるWinSynを紹介する。
このデータセットには、世界中の場所から選抜された高解像度の窓の写真が含まれており、89,318の個々の窓作物は、多様な幾何学的特徴と材料的特性を示している。
合成画像と実画像の両方で意味的セグメンテーションネットワークを訓練し、実画像の共有テストセットでそれらの性能を比較することによって、手続きモデルを評価する。
論文 参考訳(メタデータ) (2023-10-09T20:18:10Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
我々は10,168個の画像からなる新しいデータセットを導入し,それぞれに知覚的アーティファクトラベルを付加した。
提案したデータセットに基づいてトレーニングされたセグメンテーションモデルは、さまざまなタスクにまたがるアーティファクトを効果的にローカライズする。
生成した画像の知覚的アーティファクトをシームレスに修正する,革新的なズームイン・インペインティングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-09T10:22:08Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
オブジェクト分類では、オブジェクトごとに、異なる条件下で、多数の画像を取得することは必ずしも不可能である。
本研究は,学習データセット内の限られたデータに対処するゲームエンジンを用いた人工画像の作成について検討する。
論文 参考訳(メタデータ) (2022-12-09T11:43:04Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Synthetic Data for Model Selection [2.4499092754102874]
合成データはモデル選択に有用であることを示す。
そこで本研究では,実領域に適合する合成誤差推定をキャリブレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T09:52:03Z) - PennSyn2Real: Training Object Recognition Models without Human Labeling [12.923677573437699]
我々はPennSyn2Realを提案する。20種類以上のマイクロエアロビー(MAV)の10万以上の4K画像からなる合成データセットである。
このデータセットは、MAV検出や分類などのハイレベルコンピュータビジョンタスクのための任意の数のトレーニングイメージを生成するために使用することができる。
このフレームワークを用いて生成された合成データは,検出やセグメンテーションといった一般的なオブジェクト認識タスクに対して,CNNモデルをトレーニングするために直接利用できることを示す。
論文 参考訳(メタデータ) (2020-09-22T02:53:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。