論文の概要: Divide-and-conquer embedding for QUBO quantum annealing
- arxiv url: http://arxiv.org/abs/2211.02184v2
- Date: Sat, 12 Nov 2022 17:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 11:35:57.013322
- Title: Divide-and-conquer embedding for QUBO quantum annealing
- Title(参考訳): QUBO量子アニールのための分極・対数埋め込み
- Authors: Minjae Jo, Michael Hanks, M. S. Kim
- Abstract要約: 組込み問題に焦点をあてたアプローチは、桁違いに性能を向上できることを示す。
以上の結果から,組込み問題に焦点をあてたアプローチにより,桁違いの性能向上が期待できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum annealing promises to be an effective heuristic for complex NP-hard
problems. However, clear demonstrations of quantum advantage are wanting,
primarily constrained by the difficulty of embedding the problem into the
quantum hardware. Community detection methods such as the Girvin--Newman
algorithm can provide a divide-and-conquer approach to large problems. Here, we
propose a problem-focused division for embedding, deliberately worsening
typical measures of embedding quality to improve the partial solutions we
obtain. We apply this approach first to the highly irregular graph of an
integer factorisation problem and, passing this initial test, move on to
consider more regular geometrically frustrated systems. Our results show that a
problem-focused approach to embedding can improve performance by orders of
magnitude.
- Abstract(参考訳): 量子アニールは複雑なNPハード問題に対する効果的なヒューリスティックである。
しかし、量子優位性の明確な実証は、主に量子ハードウェアに問題を埋め込むことの難しさに制約されている。
Girvin--Newmanアルゴリズムのようなコミュニティ検出手法は、大きな問題に対する分割対コンカレントアプローチを提供することができる。
本稿では,組込み品質の典型的な尺度を意図的に悪化させ,部分的解法を改善する問題に焦点を当てた組込み分割を提案する。
まず、この手法を整数分解問題の非常に不規則なグラフに適用し、この初期テストに合格して、より規則的な幾何学的フラストレーションシステムを考える。
その結果,組込み問題に着目したアプローチは,性能を桁違いに改善できることがわかった。
関連論文リスト
- Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems [0.0]
量子アニールは、QUBOの定式化で表されるいくつかのロジスティック最適化問題を解くのに適している。
量子異方体が提案する解法は一般に最適ではなく、熱ノイズやその他の乱雑な効果は計算に関わる量子ビットの数が大きすぎるときに生じる。
本稿では,従来の分枝分枝分枝法を用いて,より少ない量子ビット数で表されるサブプロブレムに分割する手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T09:19:01Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Vision Clustering [10.360126989185261]
本稿では,Adiabatic quantum computing を用いた解法に適した最初のクラスタリング定式化を提案する。
提案手法は,最先端の最適化手法と比較して高い競合性を示す。
この研究は、現在世代の実量子コンピュータにおけるクラスタリング問題の解決可能性を示す。
論文 参考訳(メタデータ) (2023-09-18T16:15:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - A Hybrid Quantum-Classical Heuristic to solve large-scale Integer Linear
Programs [0.4925222726301578]
本稿では、整数線形プログラムの解を見つけることができる任意の量子アルゴリズムをブランチ・アンド・プライス・アルゴリズムに統合する手法を提案する。
量子アルゴリズムの役割は、ブランチ・アンド・プライスに現れるサブプロブレムに対する整数解を見つけることである。
論文 参考訳(メタデータ) (2021-03-29T08:59:26Z) - Optimizing the Optimizer: Decomposition Techniques for Quantum Annealing [0.0]
現在の世代の量子コンピュータは、現実世界の問題を解決するには小さすぎる。
本研究では,ベンチマーク問題に対する多種多様なアプローチについて検討する。
その結果,解法の性能は問題グラフの構造に大きく依存していることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T21:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。