論文の概要: Quantum constraint learning for quantum approximate optimization
algorithm
- arxiv url: http://arxiv.org/abs/2105.06770v2
- Date: Tue, 14 Dec 2021 16:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 04:20:18.240524
- Title: Quantum constraint learning for quantum approximate optimization
algorithm
- Title(参考訳): 量子近似最適化アルゴリズムのための量子制約学習
- Authors: Santosh Kumar Radha
- Abstract要約: 本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is a hybrid
quantum-classical variational algorithm that offers the potential to handle
combinatorial optimization problems. Introducing constraints in such
combinatorial optimization problems poses a significant challenge in the
extensions of QAOA to support relevant larger-scale problems. This paper
introduces a quantum machine learning approach to learn the mixer Hamiltonian
required to hard constrain the search subspace. We show that this method can be
used for encoding any general form of constraints. One can directly plug the
learnt unitary into the QAOA framework using an adaptable ansatz. This
procedure gives the flexibility to control the depth of the circuit at the cost
of the accuracy of enforcing the constraint, thus having immediate application
in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an
intuitive metric that uses Wasserstein distance to assess the performance of
general approximate optimization algorithms with/without constraints. Finally,
using this metric, we evaluate the performance of the proposed algorithm.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、組合せ最適化問題を扱うポテンシャルを提供するハイブリッド量子古典変動アルゴリズムである。
このような組合せ最適化問題における制約の導入は、関連する大規模問題をサポートするためにQAOAの拡張において大きな課題となる。
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
本手法は,任意の一般的な制約を符号化するために使用できることを示す。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
この手順は、制約を強制する精度を犠牲にして回路の深さを制御する柔軟性を与え、ノイズ中間スケール量子(NISQ)時代に即座に適用できる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を制約なしで評価する直感的計量法を開発した。
最後に,提案手法を用いて提案手法の性能評価を行う。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
本稿では,量子サブルーチンを用いた大規模圧縮センシング問題に対処する枠組みを提案する。
本研究は, 量子コンピュータを圧縮センシング分野に適用する有望な方法を探るものである。
論文 参考訳(メタデータ) (2024-03-26T05:26:51Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
制約付き最適化問題を解くためのフェルミオン量子近似最適化アルゴリズム(FQAOA)を提案する。
FQAOAは、フェルミオン粒子数保存を用いて、QAOAを通して本質的にそれらを強制する制約問題に対処する。
制約付きハミルトニアン問題に対して、運転者ハミルトニアンを設計するための体系的なガイドラインを提供する。
論文 参考訳(メタデータ) (2023-01-25T18:36:58Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
ADAPT-QAOA施行時に発生する絡みについて検討した。
この柔軟性を漸進的に制限することにより、初期におけるより多くの絡み合いエントロピーが、後段におけるより速い収束と一致していることが分かる。
論文 参考訳(メタデータ) (2022-05-24T18:00:02Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。