Learning to Design and Use Tools for Robotic Manipulation
- URL: http://arxiv.org/abs/2311.00754v1
- Date: Wed, 1 Nov 2023 18:00:10 GMT
- Title: Learning to Design and Use Tools for Robotic Manipulation
- Authors: Ziang Liu, Stephen Tian, Michelle Guo, C. Karen Liu, Jiajun Wu
- Abstract summary: Recent techniques for jointly optimizing morphology and control via deep learning are effective at designing locomotion agents.
We propose learning a designer policy, rather than a single design.
We show that this framework is more sample efficient than prior methods in multi-goal or multi-variant settings.
- Score: 21.18538869008642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When limited by their own morphologies, humans and some species of animals
have the remarkable ability to use objects from the environment toward
accomplishing otherwise impossible tasks. Robots might similarly unlock a range
of additional capabilities through tool use. Recent techniques for jointly
optimizing morphology and control via deep learning are effective at designing
locomotion agents. But while outputting a single morphology makes sense for
locomotion, manipulation involves a variety of strategies depending on the task
goals at hand. A manipulation agent must be capable of rapidly prototyping
specialized tools for different goals. Therefore, we propose learning a
designer policy, rather than a single design. A designer policy is conditioned
on task information and outputs a tool design that helps solve the task. A
design-conditioned controller policy can then perform manipulation using these
tools. In this work, we take a step towards this goal by introducing a
reinforcement learning framework for jointly learning these policies. Through
simulated manipulation tasks, we show that this framework is more sample
efficient than prior methods in multi-goal or multi-variant settings, can
perform zero-shot interpolation or fine-tuning to tackle previously unseen
goals, and allows tradeoffs between the complexity of design and control
policies under practical constraints. Finally, we deploy our learned policies
onto a real robot. Please see our supplementary video and website at
https://robotic-tool-design.github.io/ for visualizations.
Related papers
- Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
We show how passive human videos can serve as a rich source of data for learning such generalist robots.
We learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations.
We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects.
arXiv Detail & Related papers (2023-12-01T18:54:12Z) - Creative Robot Tool Use with Large Language Models [47.11935262923095]
This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning.
We develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments.
arXiv Detail & Related papers (2023-10-19T18:02:15Z) - Learning Generalizable Tool-use Skills through Trajectory Generation [13.879860388944214]
We train a single model on four different deformable object manipulation tasks.
The model generalizes to various novel tools, significantly outperforming baselines.
We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human.
arXiv Detail & Related papers (2023-09-29T21:32:42Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation [35.34044822433743]
Recent works in robotic manipulation have shown potential for tackling a range of tasks.
We conjecture that this is due to the high-dimensional action space for joint control.
In this paper, we take an alternative approach and separate the task of learning 'what to do' from 'how to do it'
The whole-body robotic kinematic control is optimized to execute the high-dimensional joint motion to reach the goals in the workspace.
arXiv Detail & Related papers (2023-03-07T16:31:13Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Learning Tool Morphology for Contact-Rich Manipulation Tasks with
Differentiable Simulation [27.462052737553055]
We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators.
In our approach, we instead only need to define the objective with respect to the task performance and enable learning a robust morphology by randomizing the task variations.
We demonstrate the effectiveness of our method for designing new tools in several scenarios such as winding ropes, flipping a box and pushing peas onto a scoop in simulation.
arXiv Detail & Related papers (2022-11-04T00:57:36Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.