Seismic-phase detection using multiple deep learning models for global
and local representations of waveforms
- URL: http://arxiv.org/abs/2211.02261v1
- Date: Fri, 4 Nov 2022 04:37:04 GMT
- Title: Seismic-phase detection using multiple deep learning models for global
and local representations of waveforms
- Authors: Tomoki Tokuda and Hiromichi Nagao
- Abstract summary: Recent advances in machine learning have enabled the automatic detection of earthquakes from waveform data.
In this study, we proposed and tested a novel phase detection method employing deep learning.
The novelty of the proposed method is its separate explicit learning strategy for global and local representations of waveforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of earthquakes is a fundamental prerequisite for seismology and
contributes to various research areas, such as forecasting earthquakes and
understanding the crust/mantle structure. Recent advances in machine learning
technologies have enabled the automatic detection of earthquakes from waveform
data. In particular, various state-of-the-art deep-learning methods have been
applied to this endeavour. In this study, we proposed and tested a novel phase
detection method employing deep learning, which is based on a standard
convolutional neural network in a new framework. The novelty of the proposed
method is its separate explicit learning strategy for global and local
representations of waveforms, which enhances its robustness and flexibility.
Prior to modelling the proposed method, we identified local representations of
the waveform by the multiple clustering of waveforms, in which the data points
were optimally partitioned. Based on this result, we considered a global
representation and two local representations of the waveform. Subsequently,
different phase detection models were trained for each global and local
representation. For a new waveform, the overall phase probability was evaluated
as a product of the phase probabilities of each model. This additional
information on local representations makes the proposed method robust to noise,
which is demonstrated by its application to the test data. Furthermore, an
application to seismic swarm data demonstrated the robust performance of the
proposed method compared with those of other deep learning methods. Finally, in
an application to low-frequency earthquakes, we demonstrated the flexibility of
the proposed method, which is readily adaptable for the detection of
low-frequency earthquakes by retraining only a local model.
Related papers
- High Resolution Seismic Waveform Generation using Denoising Diffusion [3.5046784866523932]
This study introduces a novel, efficient, and scalable generative model for high-frequency seismic waveform generation.
A spectrogram representation of seismic waveform data is reduced to a lower-dimensional submanifold via an autoencoder.
A state-of-the-art diffusion model is trained to generate this latent representation, conditioned on key input parameters.
arXiv Detail & Related papers (2024-10-25T07:01:48Z) - OPONeRF: One-Point-One NeRF for Robust Neural Rendering [70.56874833759241]
We propose a One-Point-One NeRF (OPONeRF) framework for robust scene rendering.
Small but unpredictable perturbations such as object movements, light changes and data contaminations broadly exist in real-life 3D scenes.
Experimental results show that our OPONeRF outperforms state-of-the-art NeRFs on various evaluation metrics.
arXiv Detail & Related papers (2024-09-30T07:49:30Z) - Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning [57.91994916297646]
Architected hierarchical phononic materials have sparked promise tunability of elastodynamic waves and vibrations over multiple frequency ranges.
In this article, hierarchical unit-cells are obtained, where features at each length scale result in a band gap within a targeted frequency range.
Our approach offers a flexible and efficient method for the exploration of new regions in the hierarchical design space.
arXiv Detail & Related papers (2024-08-15T21:35:06Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
Currently available neural network-based modeling approaches fall short when faced with data collected randomly over time and space.
In response, we developed a new method that effectively handles such randomly sampled data.
Our model integrates techniques from amortized variational inference, neural differential equations, neural point processes, and implicit neural representations to predict both the dynamics of the system and the timings and locations of future observations.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Controllable seismic velocity synthesis using generative diffusion models [4.2193475197905705]
We propose conditional generative diffusion models for seismic velocity synthesis.
This approach enables the generation of seismic velocities that closely match the expected target distribution.
We demonstrate the flexibility and effectiveness of our method through training diffusion models on the OpenFWI dataset.
arXiv Detail & Related papers (2024-02-09T09:41:26Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - A Review of Sound Source Localization with Deep Learning Methods [71.18444724397486]
This article is a review on deep learning methods for single and multiple sound source localization.
We provide an exhaustive topography of the neural-based localization literature in this context.
Tables summarizing the literature review are provided at the end of the review for a quick search of methods with a given set of target characteristics.
arXiv Detail & Related papers (2021-09-08T07:25:39Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Gravitational-wave selection effects using neural-network classifiers [0.0]
We train a series of neural-network classifiers to predict the LIGO/Virgo detectability of gravitational-wave signals from compact-binary mergers.
We include the effect of spin precession, higher-order modes, and multiple detectors.
Our approach is ready to be used in conjunction with full pipeline injections, thus paving the way toward including actual distributions of astrophysical and noise triggers into gravitational-wave population analyses.
arXiv Detail & Related papers (2020-07-13T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.